Return to search

Regulace pre-mRNA sestřihu v prostředí buněčného jádra / Regulace pre-mRNA sestřihu v prostředí buněčného jádra

Eukaryotic genes contain non-coding sequences - introns that are removed during pre-mRNA splicing by the spliceosome. The spliceosome is composed of five snRNPs (U1, U2, U4/U6 and U5) which assemble on pre-mRNA in a step-wise manner and together with additional non-snRNP proteins catalyse splicing. Mutations in splicing factors can cause severe diseases, for example a point missense mutation (called AD29) in hPrp31 (U4/U6 snRNP specific protein) induces retinitis pigmentosa, disease often leading to complete blindness. In this PhD thesis we show that the hPrp31 AD29 mutant is unstable and is not properly incorporated into spliceosomal snRNPs. In addition, the expression of the mutant protein reduces cell proliferation, which indicates that it interferes with cellular metabolism (likely splicing) and could explain the induction of retinitis pigmentosa. Next, we focus on a role of nuclear environment in pre-mRNA splicing. It was shown that new U4/U6·U5 snRNPs are preferentially assembled in non-membrane nuclear structure - Cajal body. Here we expand this finding and provide evidence that Cajal bodies are also important for U4/U6·U5 snRNP recycling after splicing. In addition, we analyzed a role of chromatin and particularly histone acetylation modulates in splicing regulation. Using inhibitor of...

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:311481
Date January 2011
CreatorsHnilicová, Jarmila
ContributorsStaněk, David, Půta, František, Dvořák, Michal
Source SetsCzech ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0017 seconds