Return to search

Reducing top mat reinforcement in bridge decks

The Texas Department of Transportation (TxDOT) uses precast, prestressed concrete panels (PCPs) as stay-in-place formwork for most bridges built in Texas. The PCPs are placed on the top flanges of adjacent girders and topped with a 4-in. cast-in-place (CIP) slab. This thesis is directed towards identifying and quantifying the serviceability implications of reducing the deck reinforcement across the interior spans of CIP-PCP decks. The goal of this research is to understand how the PCPs influence cracking and crack control in the CIP slab and to make recommendations to optimize the top mat reinforcement accordingly.
Several tests were conducted to evaluate the performance of different top mat reinforcement arrangements for ability to control crack widths across PCP joints. The longitudinal reinforcement was tested using a constant bending moment test, a point load test, and several direct tension tests. Because of difficulty with the CIP-PCP interface during the longitudinal tests, direct tension tests of the CIP slab only were used to compare the transverse reinforcement alternatives. Prior to testing, various top mat design alternatives were evaluated through pre-test calculations for crack widths. Standard reinforcing bars and welded wire reinforcement were considered for the design alternatives.
During this study, it was found that the tensile strength of the CIP slab is critical to controlling transverse crack widths. The CIP-PCP interface is difficult to simulate in the laboratory because of inherent eccentricities that result from the test specimen geometry and loading conditions. Furthermore, the constraint and boundary conditions of CIP-PCP bridge decks are difficult to simulate in the laboratory. Based on the results of this testing program, it seems imprudent to reduce the longitudinal reinforcement across the interior spans of CIP-PCP decks. The transverse reinforcement, however, may be reduced using welded wire reinforcement across the interior spans of CIP-PCP decks without compromising longitudinal crack width control. A reduced standard reinforcing bar option may also be considered, but a slight increase in longitudinal crack widths should be expected. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2010-05-928
Date21 October 2010
CreatorsFoster, Stephen Wroe, 1986-
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.0077 seconds