Return to search

Estrategia de cálculo del vapor de agua a partir de las observaciones GNSS para su caracterización y aplicación climática

[ES] El vapor de agua es la llave del ciclo hidrológico, del balance energético atmosférico y el principal gas natural de efecto invernadero. Su estudio, es, por tanto, esencial para entender la dinámica climática y para la previsión de fenómenos meteorológicos. El uso de las observaciones GNSS para obtenerlo, contribuye de forma notable a su estudio, dada su alta resolución espacial y temporal.
Para que se pueda obtener el vapor de agua a partir de observaciones GNSS, estas deben procesarse de un modo que asegure una alta precisión en la obtención de la componente troposférica. En esta tesis, se muestra una estrategia de cálculo con el programa científico Bernese 5.2, basado en Dobles Diferencias de fase, y detallada con sus diferentes opciones.
Esa estrategia se aplicó sobre un conjunto de estaciones GNSS situadas desde la ciudad de Vigo, hasta la ciudad francesa de Brest con un total de nueve estaciones principales, a las que se sumaron otras 8 para el diseño de la red de procesamiento. La estrategia fue validada con los productos oficiales de referencia, EPN REPRO2, con las 13 estaciones comunes entre la red de procesamiento y la red EUREF, obteniendo un valor de error medio cuadrático de aproximadamente 3 milímetros. Después se procedió al cálculo del vapor de agua precipitable, con el uso del modelo GPT3 completando cuatro años de datos. Para la validación de estas series de vapor de agua se usaron observaciones de radiosonda, de dos estaciones, situadas cerca de la estación de GNSS de A Coruña y de Santander. La comparación del vapor de agua, arrojó valores máximos de error medio cuadrático de 3 milímetros.
Con las series de vapor de agua, se procedió al estudio de su caracterización espacial y temporal. Se constató la disminución del vapor de agua al ascender en la latitud. Así mismo, se observó en la variación temporal una componente anual mucho más significativa que la semianual, así como una distribución claramente estacional del vapor de agua, con valores en la estación de verano muy superiores a la estación de invierno. Las anomalías diarias mostraron ciertas similitudes, con un valor mínimo en la noche, ascendiendo hacia un pico o valor máximo, generalmente en la tarde. Su comportamiento también se mostró claramente estacional, con una variación mucho más significativa y de mayor amplitud en el verano que en el invierno.
La serie de vapor de agua de la ciudad de A Coruña, junto con los datos de una estación meteorológica, se aplicaron al estudio de su relación con otras variables atmosféricas. En el caso de la temperatura y el vapor de agua, el estudio mostró una fuerte correlación. Sin embargo, el estudio de la relación entre el vapor de agua y precipitación no mostró ninguna relación entre ambas. Además, la serie de vapor de agua permitió estudiar el índice de Eficiencia de Precipitación, encontrándose una baja efectividad de los mecanismos que producen la precipitación más acusada en verano que en invierno, a pesar del nivel alto de vapor de agua en la estación estival. Además, se estudiaron nueve episodios de lluvia de diferentes estaciones climáticas, estudiando la evolución temporal del vapor de agua antes, durante y después del fenómeno. Esto permitió observar un patrón de comportamiento similar con un claro aumento del vapor de agua antes del comienzo de la lluvia y un fuerte descenso posterior, que fue parametrizado en forma de diferentes indicadores, en los que, de nuevo, se constató una fuerte componente estacional. Además, se pudo observar un comportamiento más significativo en la ventana de 12 horas previas a los episodios de lluvia. / [CA] El vapor d'aigua és la clau del cicle hidrològic, del balanç energètic atmosfèric i el principal gas natural d'efecte d'hivernacle. El seu estudi, és, per tant, essencial per a entendre la dinàmica climàtica i per a la previsió de fenòmens meteorològics. L'ús de les observacions GNSS per a obtindre'l, contribuïx de manera notable al seu estudi, donada la seua alta resolució espacial i temporal.
Perquè es puga obtindre el vapor d'aigua a partir d'observacions GNSS, estes han de processar-se d'un mode que assegure una alta precisió en l'obtenció de la component troposfèrica. En esta tesi, es mostra una estratègia de càlcul amb el programa científic Bernese 5.2, basat en Dobles Diferències de fase, i detallada amb les seues diferents opcions.
Eixa estratègia es va aplicar sobre un conjunt d'estacions GNSS situades des de la ciutat de Vigo, fins a la ciutat francesa de Brest amb un total de nou estacions principals, a les quals es van sumar altres 8 per al disseny de la xarxa de processament. L'estratègia va ser validada amb els productes oficials de referència, EPN REPRO2, amb les 13 estacions comunes entre la xarxa de processament i la xarxa EUREF, obtenint un valor d'error mig quadràtic d'aproximadament 3 mil·límetres. Després es va procedir al càlcul del vapor d'aigua precipitable, amb l'ús del model GPT3 completant quatre anys de dades. Per a la validació d'estes sèries de vapor d'aigua es van usar observacions de radiosonda, de dos estacions, situades prop de l'estació de GNSS de la Corunya i de Santander. La comparació del vapor d'aigua, va llançar valors màxims d'error mig quadràtic de 3 mil·límetres.
Amb les sèries de vapor d'aigua, es va procedir a l'estudi de la seua caracterització espacial i temporal. Es va constatar la disminució del vapor d'aigua en ascendir en la latitud. Així mateix, es va observar en la variació temporal una component anual molt més significativa que la semianual, així com una distribució clarament estacional del vapor d'aigua, amb valors en l'estació d'estiu molt superiors a l'estació d'hivern. Les anomalies diàries van mostrar unes certes similituds, amb un valor mínim en la nit, ascendint cap a un pic o valor màxim, generalment en la vesprada. El seu comportament també es va mostrar clarament estacional, amb una variació molt més significativa i de major amplitud en l'estiu que en l'hivern.
La sèrie de vapor d'aigua de la ciutat de la Corunya, juntament amb les dades d'una estació meteorològica, es van aplicar a l'estudi de la seua relació amb altres variables atmosfèriques. En el cas de la temperatura i el vapor d'aigua, l'estudi va mostrar una forta correlació. No obstant això , l'estudi de la relació entre el vapor d'aigua i precipitació no va mostrar cap relació entre ambdues. A més, la sèrie de vapor d'aigua va permetre estudiar l'índex d'Eficiència de Precipitació, trobant-se una baixa efectivitat dels mecanismes que produïxen la precipitació més acusada a l'estiu que a l'hivern, malgrat el nivell alt de vapor d'aigua en l'estació estival. A més, es van estudiar nou episodis de pluja de diferents estacions climàtiques, estudiant l'evolució temporal del vapor d'aigua abans, durant i després del fenomen. Això va permetre observar un patró de comportament similar amb un clar augment del vapor d'aigua abans del començament de la pluja i un fort descens posterior, que va ser parametritzat en forma de diferents indicadors, en els quals, de nou, es va constatar una forta component estacional. A més, es va poder observar un comportament més significatiu en la finestra de 12 hores prèvies als episodis de pluja. / [EN] Water vapour is the key of the hydrological cycle and the atmospheric energy balance and the most important natural greenhouse gas. Its study is therefore essential for understanding climate dynamics and for forecasting meteorological phenomena. The use of GNSS observations to obtain it contributes significantly to its study, given its high spatial and temporal resolution.
In order to obtain water vapour from GNSS observations, these must be processed in a way that ensures high accuracy in obtaining the tropospheric component. In this thesis, a calculation strategy with the scientific programme Bernese 5.2, based on Double Phase Differences, is shown, and detailed with its different options.
This strategy was applied on a set of GNSS stations located from the Spanish city of Vigo to the French city of Brest with a total of nine main stations, to which another 8 were added for the design of the Double Difference processing network. The strategy was validated with the official reference products, EPN REPRO2, with the 13 common stations between the processing network and the EUREF network, obtaining a mean square error value of approximately 3 millimetres. Then, four years series of precipitable water vapour was calculated, using the GPT3 model. For the validation of these water vapour series, radiosonde observations from two stations, located near the GNSS station of A Coruña and Santander were used. The comparison between both sets of water vapour information was performed yielding maximum values of mean square error of 3 millimetres.
Using the water vapour series, the spatial and temporal characterisation of water vapour in the working area was studied. It was then possible to observe the decrease in water vapour with increasing latitude. Likewise, a much more significant annual component than the semi-annual one was observed in the temporal variation, as well as a clearly seasonal distribution of water vapour in the whole working area, with values in the summer season much higher than in the winter season. The daily anomalies showed some similarities, showing in general a minimum value at night, rising towards a peak or maximum value in the afternoon. Their behaviour was also clearly seasonal, with a much more significant variation and greater amplitude in the summer than in the winter.
The water vapour series of the city of A Coruña, together with data from a meteorological station, were applied to the study of their relationship with other atmospheric variables. In the case of temperature and water vapour, the study showed a strong correlation. However, the study of the relationship between water vapour and precipitation showed no relationship between the two. In addition, the water vapour series allowed the study of the Precipitation Efficiency index, finding a low effectiveness of the mechanisms that produce precipitation more pronounced in summer than in winter, despite the high level of water vapour in the summer season.
Finally, nine rainfall events were studied in different climatic seasons, studying the temporal evolution of water vapour before, during and after the event. This allowed a similar pattern of behaviour to be observed, with a clear increase in water vapour before the onset of the rain and a sharp decrease afterwards, which was parameterised in the form of different indicators, in which, once again, a strong seasonal component was observed. In addition, a more significant behaviour was observed in the 12-hour window prior to rainfall events. / Perdiguer López, R. (2024). Estrategia de cálculo del vapor de agua a partir de las observaciones GNSS para su caracterización y aplicación climática [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/205795

Identiferoai:union.ndltd.org:upv.es/oai:riunet.upv.es:10251/205795
Date04 July 2024
CreatorsPerdiguer López, Raquel
ContributorsBerné Valero, José Luis, Garrido Villén, Natalia
PublisherUniversitat Politècnica de València
Source SetsUniversitat Politècnica de València
LanguageSpanish
Detected LanguageSpanish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/acceptedVersion
Rightshttp://rightsstatements.org/vocab/InC/1.0/, info:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds