Return to search

Développements de systèmes micro-nanofluidiques appliqués à la filtration et la préconcentration

Les recherches menées au cours de cette thèse constituent une première étape de développement de méthodes expérimentales de concentration de nanoparticules à l'aide de composants micro-nanofluidiques. L'objectif principal est donc d'explorer différentes architectures de systèmes micro-nanofluidiques où l'étape de concentration est effectuée par effet d'exclusion stérique et/ou ionique sous l'application d'un champ de pression et/ou électrique. Une attention toute particulière a été portée sur les méthodes de caractérisation, comprenant notamment les méthodes de particule Tracking Micro-PIV et de microscopie par fluorescence pour mesurer la répartition en nanoparticules et quantifier les facteurs de concentration. Le premier axe concerne la concentration de nanoparticules dans des architectures de type " Bypass ". Dans le cas de la filtration stérique, une modélisation par méthode de différence finie permet de prédire l'apparition d'une zone localisée où la concentration est d'une centaine à un millier de fois plus élevée que la concentration initiale après une heure d'opération. Des composants micro-nano fluidique en silicium ont été réalisés afin de mener une étude paramétrique. En accord avec le modèle proposé, cette étude montre que le nombre de Peclet est le paramètre déterminent dans le choix du design et des conditions d'expérimentations optimums. Concernant la préconcentration par effet électrocinétique, les expérimentations ont essentiellement consisté à explorer le phénomène d'ICP (Ion Concentration Polarisation) et d'appliquer cette technique pour la concentration de nanoparticules. Enfin le type de géométries " Bypass " a été testé sous différentes conditions. Ainsi, le couplage avantageux de phénomènes électro-hydrodynamiques tel que le " streaming potentiel " permet d'ouvrir la voie à des systèmes de préconcentration à actionnements manuels, rapides et très simples d'utilisation. Le deuxième axe d'étude est quant à lui dédié à la conception et l'utilisation de configuration micro-nanofluidique plus originales. Y sont notamment étudiés des systèmes à configuration radial offrant une meilleure stabilité lors des étapes de préconcentration électrocinétiques. Sur la base des performances et limitations des différents systèmes micro-nanofluidiques réalisés, le dernier chapitre est une mise en perspective des champs d'applications potentiels, notamment pour les laboratoires sur puces.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00995377
Date09 December 2013
CreatorsAizel, Koceila
PublisherUniversité de Grenoble
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0039 seconds