<p>The ultimate goal of wildlife recovery is abundance growth of a species, though it must also involve the reestablishment of the species’ ecological role within ecosystems frequently modified by humans. Reestablishment and subsequent recovery may depend on the species’ degree of adaptive behavior as well as the duration of their functional absence and the extent of ecosystem alteration. In cases of long extirpations or extensive alteration, successful reestablishment may entail adjusting foraging behavior, targeting new prey species, and encountering unfamiliar predatory or competitive regimes. Recovering species must also increasingly tolerate heightened anthropogenic presence, particularly within densely inhabited coastal zones. In recent decades, gray seals (Halichoerus grypus) recovered from exploitation, depletion, and partial extirpation in the Northwest Atlantic. On Cape Cod, MA, USA, gray seals have reestablished growing breeding colonies and seasonally interact with migratory white sharks (Carcarodon carcharias). Though well-studied in portions of their range due to concerns over piscivorous impacts on valuable groundfish, there are broad knowledge gaps regarding their ecological role to US marine ecosystems. Furthermore, there are few studies that explicitly analyze gray seal behavior under direct risk of documented shark predation. </p><p> In this dissertation, I apply a behavioral and movement ecology approach to telemetry data to understand gray seal abundance and activity patterns along the coast of Cape Cod. This coastal focus complements extensive research documenting and describing offshore movement and foraging behavior and allows me to address questions about movement decisions and risk allocation. Using beach counts of seals visible in satellite imagery, I estimate the total regional abundance of gray seals using correction factors from haul out behavior and demonstrate a sizeable prey base of gray seals locally. Analyzing intra-annual space use patterns, I document small, concentrated home ranges utilizing nearshore habitats that rapidly expand with shifting activity budgets to target disperse offshore habitats following seasonal declines in white sharks. During the season of dense shark presence, seals conducted abbreviated nocturnal foraging trips structured temporally around divergent use of crepuscular periods. The timing of coastal behavior with different levels of twilight indicate risk allocation patterns with diel cycles of empirical white shark activity. The emergence of risk allocation to explain unique behavioral and spatial patterns observed in these gray seals points to the importance of the restored predator-prey dynamic in gray seal behavior along Cape Cod.</p> / Dissertation
Identifer | oai:union.ndltd.org:DUKE/oai:dukespace.lib.duke.edu:10161/12167 |
Date | January 2016 |
Creators | Moxley, Jerry Hall |
Contributors | Halpin, Patrick N |
Source Sets | Duke University |
Detected Language | English |
Type | Dissertation |
Page generated in 0.0023 seconds