Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Ciência da Computação, Florianópolis, 2010 / Made available in DSpace on 2012-10-25T07:31:33Z (GMT). No. of bitstreams: 1
285592.pdf: 942677 bytes, checksum: d27da8f48b91079aee8d81b72ef01712 (MD5) / Redes Neurais são amplamente empregadas em problemas de classificaçao e regressão, porém os modelos mais comuns fornecem apenas a estimação de regressão sem nenhuma medida de confiança associada à saída da rede. Medidas de desempenho global como o Erro Médio Quadrático não são capazes de reconhecer regiões onde a resposta da rede possa estar contaminada com incertezas, devido ao ruído presente nos dados ou à baixa densidade de dados de treinamento nessas regiões. Incorporar medidas de confiança na saída da rede, como intervalos de predição, valida a regressão e auxilia tomadores de decisão a estabelecerem critérios de risco, necessários em muitas aplicações práticas. Entretanto, existe uma série de restrições para o calculo do Intervalo de Predição nas redes neurais, que são dificeis de serem cumpridas em problemas reais. Neste trabalho, estudou-se as medidas de confiança fornecida pela rede de função de base radial, algumas das suas deficiencias foram tratadas com o objetivo de obter medidas de confiança mais satisfatórias e com menos restrições sobre o modelo, que possam ajudar os tomadores de decisão em aplicações reais.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufsc.br:123456789/94199 |
Date | 25 October 2012 |
Creators | Rodrigues Neto, Abner Cardoso |
Contributors | Universidade Federal de Santa Catarina, Roisenberg, Mauro |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | 57 p.| il., grafs., tabs. |
Source | reponame:Repositório Institucional da UFSC, instname:Universidade Federal de Santa Catarina, instacron:UFSC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds