Creatinine is a metabolic waste product, removed from the blood by the kidneys, and excreted in the urine. The measurement of creatinine is used in the assessment and monitoring of many medical conditions as well as in the determination or adjustment of absorbed dosage of pesticides. Earlier models to predict 24-hour urinary creatinine used ordinary least squares regression and assumed that the subjects' observations were uncorrelated. However, many of these studies had repeated creatinine measurements for each of their subjects. Repeated measures on the same subject frequently are correlated. Using data from the NIOSH-CDC "Pesticide Dose Monitoring in Turf Applicators" study, this thesis project built a model to predict 24-hour urinary creatinine using the Mixed Model methodology. A covariance structure, that permitted multiple observations for any one individual to be correlated, was identified and utilized. The predictive capabilities of this model were then compared to the earlier models investigated.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-2171 |
Date | 01 January 2006 |
Creators | Kroos, Donna S. |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0022 seconds