Vaccination against the Influenza A virus (IAV) is often an important and critical task for much of the population, as IAV causes yearly epidemics, and can cause even deadlier pandemics. Designing the vaccine requires an understanding of the current major circulating strains of Influenza, as well as an understanding of how those strains could change over time to become either less harmful or more deadly, or simply die out completely. An error in the prediction process can lead to a non-immunized population at risk of epidemics, or even a pandemic. Presented here is a posterior predictive approach to generate emerging influenza strains based on a realistic genomic model that incorporates natural features of viral evolution such as selection and recombination. Also introduced is a sequence sampling scheme to relieve the computational burden of the posterior predictive analysis by clustering sequences based on their pairwise similarity. Finally, the impact of “evolutionary accidents” that take the form of bursts of evolution and or of recombination on the predictive power of our procedure is tested. An analysis of the impact of these bursts is carried out in a retrospective study that focuses on the unexpected emergence of a new H3N2 strain in the 2007-08 influenza season. Measuring the R2 values of both pairwise and patristic distances, the model reaches a predictive power of ∼40%, but is not able to simulate the emergence of the target Brisbane/10/2007 sequence with a high probability. The inclusion of “evolutionary accidents” improved the algorithm’s ability to predict HA sequences, but the prediction power of the NA gene remained low.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/22679 |
Date | January 2012 |
Creators | Sandie, Reatha |
Contributors | Aris-Brosou, Stephane |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.002 seconds