Alcohol dependence (alcoholism) is a complex disease influenced by both environmental factors and genetic predisposition. Mouse models have been used to study many alcohol dependence-related traits and the genetics that underlie them. Two of the most commonly used mice in alcohol research are the C57BL/6J (B6) and DBA/2J (D2) inbred strains, which diverge on several alcohol-related traits including the development of acute physical dependence. Here we utilized the B6 and D2 mice as a genetic model of acute physical dependence, coupled with mRNA Differential Display (DD) and cDNA microarray analysis, to uncover the transcriptional response of the brain to an acute dose of alcohol as a function of time. About 150 genetically divergent and alcohol-responsive genes were identified between the whole brains of B6 and D2 mice using DD and were added as additional targets to the mouse microarrays. Microarray analysis of the prefrontal cortex of B6 and D2 mice revealed strain-specific, acute alcohol-responsive transcriptome remodeling manifested as temporal patterns of gene expression. Distinct expression patterns were identified for physiologically relevant alcohol-related consequences including intoxication, withdrawal and neuroadaptation. In silico characterization of the differentially expressed genes showed genotype dependent and independent transcriptional regulation and functional classification. In addition, categorization of differentially expressed genes by their cellular profiles revealed that some of the genes were known to be more highly expressed in either excitatory or inhibitory neuronal cell types. Our results indicate that the B6 and D2 prefrontal cortices have very different cellular and molecular responses to acute alcohol exposure. The specific roles that the genes identified in this study may play in mediating the divergent alcohol-related behavior between the strains warrant further study. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/29630 |
Date | 28 April 2015 |
Creators | Lodowski, Kerrie Hall |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0013 seconds