A large eddy simulation (LES) model has been developed and validated for turbulent non-premixed and partially premixed combustion systems. LES based combustion modelling strategy has the ability to capture the detailed structure of turbulent flames and account for the effects of radiation heat loss. Effects of radiation heat loss is modelled by employing an enthalpy-defect based non-adiabatic flamelet model (NAFM) in conjunction with a steady non-adiabatic flamelet approach. The steady laminar flamelet model (SLFM) is used with multiple flamelet solutions through the development of pre-integrated look up tables. The performance of the non-adiabatic model is assessed against experimental measurements of turbulent CH4/H2 bluff-body stabilized and swirl stabilized jet flames carried out by the University of Sydney combustion group. Significant enhancements in the predictions of mean thermal structure have been observed with both bluff body and swirl stabilized flames by the consideration of radiation heat loss through the non-adiabatic flamelet model. In particular, mass fractions of product species like CO2 and H2O have been improved with the consideration of radiation heat loss. From the Sydney University data the HM3e flame was also investigated with SLFM using multiple flamelet strategy and reasonably fair amount of success has been achieved. In this work, unsteady flamelet/progress variable (UFPV) approach based combustion model which has the potential to describe both non-premixed and partially premixed combustion, has been developed and incorporated in an in-house LES code. The probability density function (PDF) for reaction progress variable and scalar dissipation rate is assumed to follow a delta distribution while mixture fraction takes the shape of a beta PDF. The performance of the developed model in predicting the thermal structure of a partially premixed lifted turbulent jet flame in vitiated co-flow has been evaluated. The UFPV model has been found to successfully predict the flame lift-off, in contrast SLFM results in a false attached flame. The mean lift-off height is however over-predicted by UFPV-δ function model by ~20% for methane based flame and under-predicted by ~50% for hydrogen based flame. The form of the PDF for the reaction progress variable and inclusion of a scalar dissipation rate thus seems to have a strong influence on the predictions of gross characteristics of the flame. Inclusion of scalar dissipation rate in the calculations appears to be successful in predicting the flame extinction and re-ignition phenomena. The beta PDF distribution for the reaction progress variable would be a true prospect for extending the current simulation to predict the flame characteristics to a higher degree.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:515595 |
Date | January 2009 |
Creators | Sadasivuni, S. K. |
Publisher | Loughborough University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://dspace.lboro.ac.uk/2134/5804 |
Page generated in 0.0023 seconds