of doctoral thesis Study of Arithmetical Structures and Theories with Regard to Representative and Descriptive Analysis Petr Glivický We are motivated by a problem of understanding relations between local and global properties of an operation o in a structure of the form B, o , with regard to an application for the study of models B, · of Peano arithmetic, where B is a model of Presburger arithmetic. We are particularly interested in a dependency problem, which we formulate as the problem of describing the dependency closure iclO (E) = {d ∈ Bn ; (∀o, o ∈ O)(o E = o E ⇒ o(d) = o (d))}, where B is a structure, O a set of n-ary operations on B, and E ⊆ Bn. We show, that this problem can be reduced to a definability question in certain expansion of B. In particular, if B is a saturated model of Presburger arithmetic, and O is the set of all (saturated) Peano products on B, we prove that, for a ∈ B, iclO ({a}×B) is the smallest possible, i.e. it contains just those pairs (d0, d1) ∈ B2 for which at least one of di equals p(a), for some polynomial p ∈ Q[x]. We show that the presented problematics is closely connected to the descriptive analysis of linear theories. That are theories, models of which are - up to a change of the language - certain discretely ordered modules over specific discretely ordered...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:327398 |
Date | January 2013 |
Creators | Glivický, Petr |
Contributors | Mlček, Josef, Vopěnka, Petr, Zlatoš, Pavol |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0016 seconds