Return to search

Modely přestupu tepla a přívodu tepla pro zážehové motory / Heat transfer models for spark-ignition engines

The subject of this diploma thesis is the creation of a spark ignition thermodynamics model using pressure data measured on the actual engine. The model made in Matlab programming language combines Wiebe function for fuel energy release and Woschni correlation for heat transfer between in-cylinder gasses and cylinder walls. The created model contains compression and expansion stroke only, that's why are conditions at the start of compression and total heat addition calculated by measured pressure data from Skoda 1.0 MPI engine. Creation of transparent model by Matlab scripts enables other users to understand the basics of „zero-dimensional“ thermodynamics models properly, which are used by number of commercial solvers such as GT-Power simulation software. First part of this thesis deals with fundamental laws of heat addition and heat transfer, description of equations for its modelling and application. The major section is devoted to Matlab model, where defined input parameters are mentioned, description of model operation and model parameters influence study. Next parts develops issues of combustion pressure measurement and creation of engine simulation by GT-Power software used for comparison with Matlab model. In the thesis conclusion are simulations and actual engine data differences discussed.

Identiferoai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:417423
Date January 2020
CreatorsPtáček, Martin
ContributorsKlimeš, Lubomír, Štětina, Josef
PublisherVysoké učení technické v Brně. Fakulta strojního inženýrství
Source SetsCzech ETDs
LanguageCzech
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/masterThesis
Rightsinfo:eu-repo/semantics/restrictedAccess

Page generated in 0.0023 seconds