Return to search

CEV asymptotics of American options. / Constant elasticity of variance asymptotics of American options

常方差彈性(CEV) 模型能夠刻畫波動率微笑的優點使之成為期權定價中的實用工具,然而它在應用到美式衍生工具時面臨分析上及計算上的挑戰。現行的解析方法是對代表著期權價格函數和其最佳履約曲線的自由邊界問題進行拉普拉斯卡森變換(LCT) ,繼而獲得在此變換下的解析解,可是此解含有合流超線幾何函數,使得它的數值計算在某些參數下顯得不穩定及低效。本文運用漸近法徹底解決美式期權在常方差彈性模型下的定價問題,並用永久性和限時性的美式看跌期權作為例子闡述所提出的方法。 / The constant elasticity of variance (CEV) model is a practical approach to option pricing by fitting to the implied volatility skew. Its application to American-style derivatives, however, poses analytical and numerical challenges. By taking the Laplace Carson transform (LCT) to the free-boundary value problem characterizing the option value function and the early exercise boundary, the analytical result involves confluent hyper-geometric functions. Thus, the numerical computation could be unstable and inefficient for certain set of parameter values. We solve this problem by an asymptotic approach to the American option pricing problem under the CEV model. We demonstrate the use of the proposed approach using perpetual and finite-time American puts. / Detailed summary in vernacular field only. / Pun, Chi Seng. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 39-40). / Abstracts also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Problem Formulation --- p.4 / Chapter 2.1 --- The CEV model --- p.4 / Chapter 2.2 --- The free-boundary value problem --- p.5 / Chapter 2.2.1 --- Perpetual American put --- p.5 / Chapter 2.2.2 --- Finite-time American put --- p.6 / Chapter 3 --- Asymptotic expansion of American put --- p.8 / Chapter 3.1 --- Perpetual American put --- p.8 / Chapter 3.2 --- Finite-time American put --- p.16 / Chapter 4 --- Numerical examples --- p.24 / Chapter 4.1 --- Perpetual American put --- p.24 / Chapter 4.2 --- Finite-time American put --- p.26 / Chapter 5 --- Conclusion --- p.29 / Chapter A --- Proof of Lemma 3.1 --- p.30 / Chapter B --- Property of ak --- p.32 / Chapter C --- Explicit formulas for u₂(S) --- p.34 / Chapter D --- Closed-form solutions --- p.37 / Bibliography --- p.40

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_328766
Date January 2013
ContributorsPun, Chi Seng., Chinese University of Hong Kong Graduate School. Division of Risk Management Science.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatelectronic resource, electronic resource, remote, 1 online resource (v, 40 leaves)
CoverageUnited States
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0011 seconds