Return to search

The Application of Post-hoc Correction Methods for Soft Tissue Artifact and Marker Misplacement in Youth Gait Knee Kinematics

Biomechanics research investigating the knee kinematics of youth participants is very limited. The most accurate method of measuring knee kinematics utilizes invasive procedures such as bone pins. However, various experimental techniques have improved the accuracy of gait kinematic analyses using minimally invasive methods. In this study, gait trials were conducted with two participants between the ages of 11 and 13 to obtain the knee flexion-extension (FE), adduction-abduction (AA) and internal-external (IE) rotation angles of the right knee. The objectives of this study were to (1) conduct pilot experiments with youth participants to test whether any adjustments were necessary in the experimental methods used for adult gait experiments, (2) apply a Triangular Cosserat Point Element (TCPE) analysis for Soft-Tissue Artifact (STA) correction of knee kinematics with youth participants, and (3) develop a code to conduct a Principal Component Analysis (PCA) to find the PCA-defined flexion axis and calculate knee angles with both STA and PCA-correction for youth participants. The kinematic results were analyzed for six gait trials on a participant-specific basis. The TCPE knee angle results were compared between uncorrected angles and another method of STA correction, Procrustes Solution, with a repeated measures ANOVA of the root mean square errors between each group and a post-hoc Tukey test. The PCA-corrected results were analyzed with a repeated measures ANOVA of the FE-AA correlations from a linear regression analysis between TCPE, PS, PCA-TCPE and PCA-PS angles. The results indicated that (1) youth experiments can be conducted with minor changes to experimental methods used for adult gait experiments, (2) TCPE and PS analyses did not yield statistically different knee kinematic results, and (3) PCA-correction did not reduce FE-AA correlations as predicted.

Identiferoai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-3912
Date01 June 2021
CreatorsLawson, Kaila L
PublisherDigitalCommons@CalPoly
Source SetsCalifornia Polytechnic State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceMaster's Theses

Page generated in 0.0021 seconds