Return to search

Calibration Based On Principal Components

This study is concerned in reducing high dimensionality problem of auxiliary variables in the calibration estimation with the presence of nonresponse. The calibration estimation is a weighting method assists to compensate for the nonresponse in the survey analysis. Calibration estimation using principal components (PCs) is new idea in the literatures. Principal component analysis (PCA) is used in reduction dimension of the auxiliary variables. PCA in calibration estimation is presented as an alternative method for choosing the auxiliary variables. In this study, simulation on the real data is used and nonresponse mechanism is applied on the sampled data. The calibration estimator is compared using different criteria such as varying the nonresponse rate and increasing the sample size. From the results, although the calibration estimation based on the principal components have reasonable outputs to use instead of the whole auxiliary variables for the means, the variance is very large compared with based on original auxiliary variables. Finally, we identified the principal component analysis is not efficient in the reduction of high dimensionality problem of auxiliary variables in the calibration estimation for large sample sizes.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:oru-26582
Date January 2012
CreatorsKassaye, Meseret Haile, Demir, Yigit
PublisherÖrebro universitet, Handelshögskolan vid Örebro Universitet, Örebro universitet, Handelshögskolan vid Örebro Universitet
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds