Electrophysiological biosensors enables a novel way to measure electrical activity of biological structures both in-vitro and in-vivo and represents valuable alternative to current cellular activity measuring methods. Within this work we will be focusing on development of organic semiconductor (PEDOT:PSS) based Organic Electrochemical Transistors (OECTs) and optimization of material printing methods used in their development. These transistors are meant to be able to transfer electrochemical signals within the cell membrane to electrical signal. Such sensors should be used for cytotoxicity testing of chemicals and potential drugs on cardiomyocytes. Main benefits of OECTs are in their higher sensitivity thanks to their ability to locally amplify electric signals, better noise-signal ratio and outstanding biocompatibility. Their development is undemanding and inexpensive due material printing methods and materials processable at room temperatures.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:316199 |
Date | January 2017 |
Creators | Ehlich, Jiří |
Contributors | Vala, Martin, Salyk, Ota |
Publisher | Vysoké učení technické v Brně. Fakulta chemická |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0016 seconds