Return to search

Adaptable Privacy-preserving Model

Current data privacy-preservation models lack the ability to aid data decision makers in processing datasets for publication. The proposed algorithm allows data processors to simply provide a dataset and state their criteria to recommend an xk-anonymity approach. Additionally, the algorithm can be tailored to a preference and gives the precision range and maximum data loss associated with the recommended approach. This dissertation report outlined the research’s goal, what barriers were overcome, and the limitations of the work’s scope. It highlighted the results from each experiment conducted and how it influenced the creation of the end adaptable algorithm. The xk-anonymity model built upon two foundational privacy models, the k-anonymity and l-diversity models. Overall, this study had many takeaways on data and its power in a dataset.

Identiferoai:union.ndltd.org:nova.edu/oai:nsuworks.nova.edu:gscis_etd-2067
Date01 January 2019
CreatorsBrown, Emily Elizabeth
PublisherNSUWorks
Source SetsNova Southeastern University
Detected LanguageEnglish
Typedissertation
Formatapplication/pdf
SourceCCE Theses and Dissertations

Page generated in 0.0023 seconds