A vast number of online services is based on users contributing their personal information. Examples are manifold, including social networks, electronic commerce, sharing websites, lodging platforms, and genealogy. In all cases user privacy depends on a collective trust upon all involved intermediaries, like service providers, operators, administrators or even help desk staff. A single adversarial party in the whole chain of trust voids user privacy. Even more, the number of intermediaries is ever growing. Thus, user privacy must be preserved at every time and stage, independent of the intrinsic goals any involved party. Furthermore, next to these new services, traditional offline analytic systems are replaced by online services run in large data centers. Centralized processing of electronic medical records, genomic data or other health-related information is anticipated due to advances in medical research, better analytic results based on large amounts of medical information and lowered costs. In these scenarios privacy is of utmost concern due to the large amount of personal information contained within the centralized data.
We focus on the challenge of privacy-preserving processing on genomic data, specifically comparing genomic sequences. The problem that arises is how to efficiently compare private sequences of two parties while preserving confidentiality of the compared data. It follows that the privacy of the data owner must be preserved, which means that as little information as possible must be leaked to any party participating in the comparison. Leakage can happen at several points during a comparison. The secured inputs for the comparing party might leak some information about the original input, or the output might leak information about the inputs. In the latter case, results of several comparisons can be combined to infer information about the confidential input of the party under observation. Genomic sequences serve as a use-case, but the proposed solutions are more general and can be applied to the generic field of privacy-preserving comparison of sequences. The solution should be efficient such that performing a comparison yields runtimes linear in the length of the input sequences and thus producing acceptable costs for a typical use-case. To tackle the problem of efficient, privacy-preserving sequence comparisons, we propose a framework consisting of three main parts.
a) The basic protocol presents an efficient sequence comparison algorithm, which transforms a sequence into a set representation, allowing to approximate distance measures over input sequences using distance measures over sets. The sets are then represented by an efficient data structure - the Bloom filter -, which allows evaluation of certain set operations without storing the actual elements of the possibly large set. This representation yields low distortion for comparing similar sequences. Operations upon the set representation are carried out using efficient, partially homomorphic cryptographic systems for data confidentiality of the inputs. The output can be adjusted to either return the actual approximated distance or the result of an in-range check of the approximated distance.
b) Building upon this efficient basic protocol we introduce the first mechanism to reduce the success of inference attacks by detecting and rejecting similar queries in a privacy-preserving way. This is achieved by generating generalized commitments for inputs. This generalization is done by treating inputs as messages received from a noise channel, upon which error-correction from coding theory is applied. This way similar inputs are defined as inputs having a hamming distance of their generalized inputs below a certain predefined threshold. We present a protocol to perform a zero-knowledge proof to assess if the generalized input is indeed a generalization of the actual input. Furthermore, we generalize a very efficient inference attack on privacy-preserving sequence comparison protocols and use it to evaluate our inference-control mechanism.
c) The third part of the framework lightens the computational load of the client taking part in the comparison protocol by presenting a compression mechanism for partially homomorphic cryptographic schemes. It reduces the transmission and storage overhead induced by the semantically secure homomorphic encryption schemes, as well as encryption latency. The compression is achieved by constructing an asymmetric stream cipher such that the generated ciphertext can be converted into a ciphertext of an associated homomorphic encryption scheme without revealing any information about the plaintext. This is the first compression scheme available for partially homomorphic encryption schemes. Compression of ciphertexts of fully homomorphic encryption schemes are several orders of magnitude slower at the conversion from the transmission ciphertext to the homomorphically encrypted ciphertext. Indeed our compression scheme achieves optimal conversion performance. It further allows to generate keystreams offline and thus supports offloading to trusted devices. This way transmission-, storage- and power-efficiency is improved.
We give security proofs for all relevant parts of the proposed protocols and algorithms to evaluate their security. A performance evaluation of the core components demonstrates the practicability of our proposed solutions including a theoretical analysis and practical experiments to show the accuracy as well as efficiency of approximations and probabilistic algorithms. Several variations and configurations to detect similar inputs are studied during an in-depth discussion of the inference-control mechanism. A human mitochondrial genome database is used for the practical evaluation to compare genomic sequences and detect similar inputs as described by the use-case.
In summary we show that it is indeed possible to construct an efficient and privacy-preserving (genomic) sequences comparison, while being able to control the amount of information that leaves the comparison. To the best of our knowledge we also contribute to the field by proposing the first efficient privacy-preserving inference detection and control mechanism, as well as the first ciphertext compression system for partially homomorphic cryptographic systems.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:31118 |
Date | 11 September 2018 |
Creators | Beck, Martin |
Contributors | Strufe, Thorsten, Kerschbaum, Florian, Schroeder, Michael, TU Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds