Return to search

Optimization and uncertainty handling in air traffic management / Optimisation et gestion de l'incertitude du trafic aérien

Cette thèse traite de la gestion du trafic aérien et plus précisément, de l’optimisation globale des plans de vol déposés par les compagnies aériennes sous contrainte du respect de la capacité de l’espace aérien. Une composante importante de ce travail concerne la gestion de l’incertitude entourant les trajectoires des aéronefs. Dans la première partie du travail, nous identifions les principales causes d’incertitude au niveau de la prédiction de trajectoires. Celle-ci est la composante essentielle à l’automatisation des systèmes de gestion du trafic aérien. Nous étudions donc le problème du réglage automatique et en-ligne des paramètres de la prédiction de trajectoires au cours de la phase de montée avec l’algorithme d’optimisation CMA-ES. La principale conclusion, corroborée par d’autres travaux de la littérature, implique que la prédiction de trajectoires des centres de contrôle n’est pas suffisamment précise aujourd’hui pour supporter l’automatisation complète des tâches critiques. Ainsi, un système d’optimisation centralisé de la gestion du traficaérien doit prendre en compte le facteur humain et l’incertitude de façon générale.Par conséquent, la seconde partie traite du développement des modèles et des algorithmes dans une perspective globale. De plus, nous décrivons un modèle stochastique qui capture les incertitudes sur les temps de passage sur des balises de survol pour chaque trajectoire. Ceci nous permet d’inférer l’incertitude engendrée sur l’occupation des secteurs de contrôle par les aéronefs à tout moment.Dans la troisième partie, nous formulons une variante du problème classique du Air Traffic Flow and Capacity Management au cours de la phase tactique. L’intérêt est de renforcer les échanges d’information entre le gestionnaire du réseau et les contrôleurs aériens. Nous définissons donc un problème d’optimisation dont l’objectif est de minimiser conjointement les coûts de retard et de congestion tout en respectant les contraintes de séquencement au cours des phases de décollage et d’attérissage. Pour combattre le nombre de dimensions élevé de ce problème, nous choisissons un algorithme évolutionnaire multiobjectif avec une représentation indirecte du problème en se basant sur des ordonnanceurs gloutons. Enfin, nous étudions les performances et la robustesse de cette approche en utilisant le modèle stochastique défini précédemment. Ce travail est validé à l’aide de problèmes réels obtenus du Central Flow Management Unit en Europe, que l’on a aussi densifiés artificiellement. / In this thesis, we investigate the issue of optimizing the aircraft operators' demand with the airspace capacity by taking into account uncertainty in air traffic management. In the first part of the work, we identify the main causes of uncertainty of the trajectory prediction (TP), the core component underlying automation in ATM systems. We study the problem of online parameter-tuning of the TP during the climbing phase with the optimization algorithm CMA-ES. The main conclusion, corroborated by other works in the literature, is that ground TP is not sufficiently accurate nowadays to support fully automated safety-critical applications. Hence, with the current data sharing limitations, any centralized optimization system in Air Traffic Control should consider the human-in-the-loop factor, as well as other uncertainties. Consequently, in the second part of the thesis, we develop models and algorithms from a network global perspective and we describe a generic uncertainty model that captures flight trajectories uncertainties and infer their impact on the occupancy count of the Air Traffic Control sectors. This usual indicator quantifies coarsely the complexity managed by air traffic controllers in terms of number of flights. In the third part of the thesis, we formulate a variant of the Air Traffic Flow and Capacity Management problem in the tactical phase for bridging the gap between the network manager and air traffic controllers. The optimization problem consists in minimizing jointly the cost of delays and the cost of congestion while meeting sequencing constraints. In order to cope with the high dimensionality of the problem, evolutionary multi-objective optimization algorithms are used with an indirect representation and some greedy schedulers to optimize flight plans. An additional uncertainty model is added on top of the network model, allowing us to study the performances and the robustness of the proposed optimization algorithm when facing noisy context. We validate our approach on real-world and artificially densified instances obtained from the Central Flow Management Unit in Europe.

Identiferoai:union.ndltd.org:theses.fr/2014PA112183
Date22 September 2014
CreatorsMarceau Caron, Gaetan
ContributorsParis 11, Schoenauer, Marc, Savéant, Pierre
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image

Page generated in 0.0028 seconds