Return to search

Applications of Soft Computing for Power-Quality Detection and Electric Machinery Fault Diagnosis

With the deregulation of power industry and the market competition, stable and reliable power supply is a major concern of the independent system operator (ISO). Power-quality (PQ) study has become a more and more important subject lately. Harmonics, voltage swell, voltage sag, and power interruption could downgrade the service quality. In recent years, high speed railway (HSR) and massive rapid transit (MRT) system have been rapidly developed, with the applications of widespread semiconductor technologies in the auto-traction system. The harmonic distortion level worsens due to these increased uses of electronic equipment and non-linear loads. To ensure the PQ, power-quality disturbances (PQD) detection becomes important. A detection method with classification capability will be helpful for detecting disturbance locations and types.
Electric machinery fault diagnosis is another issue of considerable attentions from utilities and customers. ISO need to provide a high quality service to retain their customers. Fault diagnosis of turbine-generator has a great effect on the benefit of power plants. The generator fault not only damages the generator itself, but also causes outages and loss of profits. With high-temperature, high-pressure and factors such as thermal fatigues, many components may go wrong, which will not only lead to great economic loss, but sometimes a threat to social security. Therefore, it is necessary to detect generator faults and take immediate actions to cut the loss. Besides, induction motor plays a major role in a power system. For saving cost, it is important to run periodical inspections to detect incipient faults inside the motor. Preventive techniques for early detection can find out the incipient faults and avoid outages. This dissertation developed various soft computing (SC) algorithms for detection including power-quality disturbances (PQD), turbine-generator fault diagnosis, and induction motor fault diagnosis. The proposed SC algorithms included support vector machine (SVM), grey clustering analysis (GCA), and probabilistic neural network (PNN). Integrating the proposed diagnostic procedure and existing monitoring instruments, a well-monitored power system will be constructed without extra devices. Finally, all the methods in the dissertation give reasonable and practical estimation method. Compared with conventional method, the test results showed a high accuracy, good robustness, and a faster processing performance.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-1120108-134009
Date20 November 2008
CreatorsWu, Chien-Hsien
ContributorsHong-Tzer Yang, Ching-Tsai Pan, Whei-Min Lin, Ming-Yuan Cho, Ming-Tong Tsay, Shyh-Jier Huang
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-1120108-134009
Rightsnot_available, Copyright information available at source archive

Page generated in 0.0022 seconds