Return to search

Improving Estimation Accuracy of GPS-Based Arterial Travel Time Using K-Nearest Neighbors Algorithm

Link travel time plays a significant role in traffic planning, traffic management and Advanced Traveler Information Systems (ATIS). A public probe vehicle dataset is a probe vehicle dataset that is collected from public people or public transport. The appearance of public probe vehicle datasets can support travel time collection at a large temporal and spatial scale but at a relatively low cost. Traditionally, link travel time is the aggregation of travel time by different movements. A recent study proved that link travel time of different movements is significantly different from their aggregation. However, there is still not a complete framework for estimating movement-based link travel time. In addition, probe vehicle datasets usually have a low penetration rate but no previous study has solved this problem.
To solve the problems above, this study proposed a detailed framework to estimate movement-based link travel time using a high sampling rate public probe vehicle dataset. Our study proposed a k-Nearest Neighbors (k-NN) regression method to increase travel time samples using incomplete trajectory. An incomplete trajectory was compared with historical complete trajectories and the link travel time of the incomplete trajectory was represented by its similar complete trajectories. The result of our study showed that the method can significantly increase link travel time samples but there are still limitations. In addition, our study investigated the performance of k-NN regression under different parameters and input data. The sensitivity analysis of k-NN algorithm showed that the algorithm performed differently under different parameters and input data. Our study suggests optimal parameters should be selected using a historical dataset before real-world application.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/625901
Date January 2017
CreatorsLi, Zheng, Li, Zheng
ContributorsWu, Yao-Jan, Wu, Yao-Jan, Chiu, Yi-Chang, Hu, Xianbiao
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Thesis
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.002 seconds