Dans une première partie théorique, nous nous penchons sur une analyse rigoureuse des performances de l'algorithme Sequential Monte Carlo (SMC) conduisant à des résultats de type bornes L^p et inégalités de concentration. Nous abordons notamment le cas particulier des SMC associés à des schémas de température, et analysons sur ce sujet un processus à schéma adaptatif.Dans une seconde partie appliquée, nous illustrons son utilisation par la résolution de problèmes inverses concrets en électromagnétisme. Le plus important d'entre eux consiste à estimer les propriétés radioélectriques de matériaux recouvrant un objet de géométrie connue, et cela à partir de mesures de champs rétrodiffusés. Nous montrons comment l'algorithme SMC, couplé à des calculs analytiques, permet une inversion bayésienne, et fournit des estimées robustes enrichies d'estimations des incertitudes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00834920 |
Date | 29 May 2013 |
Creators | Giraud, François |
Publisher | Université Sciences et Technologies - Bordeaux I |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds