Neste trabalho, mostramos a existência e multiplicidade de soluções para a seguinte classe de equações elípticas quasilineares { - \'DELTA IND. \'NÜ\' POT. \'upsilon\' + \'|\'upsilon\'| POT. \'NÜ\' - 2 \'upsilon\' = f(x, u), \'upsilon\' \'DIFERENTE\' 0, \'upsilon\' \'PERTENCE A >>: Nu + jujN2 u = f(x; u); x 2 ; u 6= 0; u 2 W1;N( ); onde e um domnio em RN, N 2, N e o operador N-Laplaciano e f e uma func~ao que possui um crescimento crtico exponencial. Para obter nossos resultados utilizamos o Princpio Variacional de Ekeland, Teorema do Passo da Montanha, Categoria de Lusternik- Schnirelman, Ac~ao de Grupo e tecnicas baseadas na Teoria do G^enero. Palavras chaves: Problemas elpticos quasilineares, Metodo Variacional, N-Laplaciano, crescimento crtico exponencial, Princpio Variacional de Ekeland, Categoria de Lusternik- Schnirelman, Desigualdade de Trudinger-Moser / In this work, we show the existence and multiplicity of solutions for the following class of quasilinear elliptic equations { - \'DELTA\' IND. \'NÜ\' \'upsilon\'\' + |\'upsilon\'| POT. \'NÜ\' - 2 = f(x, \'upsilon\'), x \"IT BELONGS\' \'OMEGA\', \'upsilon\' \'DIFFERENT\' 0, \'upsilon\' \'IT BELONGS\' W POT. 1, \'NÜ\' ( OMEGA), where \'OMEGA\' is a domain in \' R POT. \'NÜ\' > OR = 2, \'DELTA\' IND. \'NÜ\' is the N-Laplacian operator and f is a function with exponential critical growth. To obtain our results we utilize the Ekeland Variational Principle, the Mountain Pass Theorem, Lusternik-Schnirelman of Category, Group Action and techniques based on Genus Theory
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-18012011-145302 |
Date | 09 December 2010 |
Creators | Freitas, Luciana Roze de |
Contributors | Alves, Claudianor Oliveira, Soares, Sérgio Henrique Monari |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds