The purpose of this thesis is to investigate if increasing complexity for a problem makes a difference for a learning system with dual parts. The dual parts of the learning system are modelled after the Actor and Critic parts from the Actor-Critic algorithm, using the reinforcement learning framework. The results conclude that not any difference can be found in the relative performance in the Actor and Critic parts when increasing the complexity of a problem. These results could depend on technical difficulties in comparing the environments and the algorithms. The difference in complexity would then be non-uniform in an unknowable way and uncertain to use as comparison. If on the other hand the change of complexity is uniform, this could point to the fact that there is an actual difference in how each of the actor and critic handles different types of complexity. Further studies with a controlled increase in complexity are needed to establish which of the scenarios is most likely to be true. In the discussion an idea is presented of using the Actor-Critic framework as a model to understand the success rate of psychological treatments better. / Syftet med den här uppsatsen är att undersöka om en ökande komplexitet på ett problem, innebär en skillnad för ett lärande system med två samverkande. De två samverkande delarna som används är från “Actor” och “Critic”, som kommer ifrån algoritmen “Actor-Critic”. som implementeras med hjälp av ramverket “Reinforcement learning”. Resultaten bekräftar att det inte verkar vara någon skillnad i relativ effektivitet mellan “Actor” och “Critic” när komplexiteten ändras mellan två problem. Detta kan bero på tekniska svårigheter att jämföra miljöerna i experimentet och algoritmerna som används. Om det finns problem med jämförelserna skulle skillnaden i komplexitet vara icke-uniform på ett obestämbart sätt, och att kunna göra jämförelser blir därför svårt. Däremot om skillnaden i komplexitet är uniform, skulle det kunna tyda på det kanske finns en skillnad i hur “Actor” och “Critic” hanterar olika typer av komplexitet. Vidare studier med kontrollerade ökningar för komplexiteten är nödvändiga för att fastställa hur “Actor-Crtic” algoritmen samverkar med skillnader i komplexitet. I diskussionen presenteras iden att använda Actor-Critic modellen för att förstå metoder för psykologiska behandlingar bättre.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-150937 |
Date | January 2018 |
Creators | Andersson, Marcus |
Publisher | Umeå universitet, Institutionen för psykologi |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds