Les risques sont inhérents à l’activité industrielle. Les prévoir et les maîtriser sont essentiels pour la conception et la conduite en sécurité des procédés. La réglementation des risques majeurs impose aux exploitants la réalisation d’études de sécurité quantitatives. La stratégie de maîtrise des risques repose sur la pertinence des analyses de risques. En marche dégradée, la dynamique des événements est déterminante pour quantifier les risques. Toutefois, de nos jours cette connaissance est difficilement accessible. Ce travail propose une méthodologie d’analyse de risques quantitative qui combine la méthode HAZOP, le retour d’expérience et la simulation dynamique de dérives de procédés. Elle repose sur quatre grandes étapes : La première étape est l’étude du fonctionnement normal du procédé. Pour cela, le procédé est décrit de façon détaillée. Des études complémentaires de caractérisation des produits et du milieu réactionnel sont menées si nécessaires. Ensuite, le procédé est simulé dynamiquement en fonctionnement normal. Lors de la seconde étape, parmi les dérives définies par l’HAZOP et le retour d’expérience, l’analyste discrimine celles dont les conséquences ne sont pas prévisibles et/ou nécessitent d’être quantifiées. La troisième phase fournit une quantification du risque sur la base de la simulation dynamique des scenarii retenus. Lors de la dernière étape, des mesures de maîtrise des risques sont définies et ajoutées au procédé lorsque le niveau de risque est supérieur au risque tolérable. Le risque résiduel est ensuite calculé jusqu’à l’atteinte de la cible sécurité. Le logiciel Aspen Plus Dynamics est sélectionné. Trois études de cas sont choisies pour démontrer d’une part, la faisabilité de la méthodologie et d’autre part, la diversité de son champ d’application : · la première étude de cas porte sur un réacteur semi-continu siège d’une réaction exothermique. L’oxydation du thiosulfate de sodium par le peroxyde d’hydrogène est choisie. Ce cas relativement simple permet d’illustrer la diversité des causes pouvant être simulées (erreur procédurale, défaut matériel, contamination de produits, …) et la possibilité d’étudier des dérives simultanées (perte de refroidissement du milieu et sous dimensionnement de la soupape de sécurité). · le deuxième cas concerne un réacteur semi-batch dans lequel une réaction exothermique de sulfonation est opérée. Elle est particulièrement difficile à mettre en œuvre car le risque d’emballement thermique est élevé. Cette étude montre l’intérêt de notre approche dans la définition des conditions opératoires pour la conduite en sécurité. · le troisième cas d’étude porte sur un procédé continu de fabrication du propylène glycol composé d’un réacteur et de deux colonnes de distillation en série. L’objectif est ici d’étudier la propagation de dérives le long du procédé. Sur la base du retour d’expérience, deux dérives au niveau du rebouilleur de la première colonne sont étudiées et illustrent les risques de pleurage et d’engorgement. La simulation dynamique illustre la propagation d’une dérive et ses conséquences sur la colonne suivante. / Risks are inherent to industrial activity. Predicting and controlling them is essential to the processes design and safe operation. Quantitative safety studies are imposed by the major hazard regulations. The risk management strategy relies on the relevance of risk analyzes. In degraded conditions, the dynamics of events are decisive for risks quantification. However, nowadays this knowledge is a real challenge. This work proposes a methodology of quantitative risk analysis, which combines the HAZOP method, the lessons learned from previous accidents and the dynamic simulation of process deviations. It is based on four main stages: The first stage is the study of the process normal operation. For this, the process is described in detail. Additional studies to characterize the products and the reaction are carried out if necessary. Then, the process is dynamically simulated in normal operation conditions. During the second step, among all the deviations defined by the HAZOP and lessons learned, the analyst discriminates those whose consequences are not predictable and/or need to be quantified. The third phase provides a risk quantification based on the dynamic simulation of the selected scenarios. In the last step, safety barriers are defined and added to the process when the risk level is greater than the tolerable risk. The residual risk is then calculated until the safety target is reached. Aspen Plus Dynamics software is selected. Three case studies are chosen in order to demonstrate, on the one hand, the feasibility of the methodology and, on the other hand, the diversity of its scope: · the first case study is a semi-continuous reactor with an exothermic reaction study. The oxidation of sodium thiosulfate by hydrogen peroxide is selected. This relatively simple case illustrates the diversity of causes that can be simulated (procedural error, material defect, product contamination …) and the possibility of studying simultaneous deviations (loss of cooling and under sized safety valve for example). · the second case concerns a semi-batch reactor in which an exothermic reaction of sulphonation is carried out. This reaction is particularly difficult to conduct because of the thermal runaway high risk. This study shows our approach’s interest in the definition of the operating conditions for safe operation. · the third case study concerns a continuous process of propylene glycol production. It is composed of a reactor and two distillation columns in series. The objective is to study the propagation of deviations along the process. Based on lessons learned, two deviations in the first column reboiler are studied and illustrate the flooding and weeping risks. Dynamic simulation illustrates the propagation of a deviation and its consequences on the second column
Identifer | oai:union.ndltd.org:theses.fr/2017INPT0111 |
Date | 28 November 2017 |
Creators | Berdouzi, Fatine |
Contributors | Toulouse, INPT, Gabas, Nadine, Olivier, Nelly |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds