Return to search

Extrator de conhecimento coletivo : uma ferramenta para democracia participativa / Extractor Collective Knowledge : a tool for participatory democracy

Orientadores: Ricardo Ribeiro Gudwin, Cesar José Bonjuani Pagan / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-26T04:03:32Z (GMT). No. of bitstreams: 1
Angelo_TiagoNovaes_M.pdf: 3900207 bytes, checksum: 2eed8dd66c9bdc37e4d58e9eac614c9d (MD5)
Previous issue date: 2014 / Resumo: O surgimento das Tecnologias de Comunicação e Informação trouxe uma nova perspectiva para o fortalecimento da democracia nas sociedades modernas. A democracia representativa, modelo predominante nas sociedades atuais, atravessa uma crise de credibilidade cuja principal consequência é o afastamento do cidadão na participação política, enfraquecendo os ideais democráticos. Neste contexto, a tecnologia surge como possibilidade para construção de um novo modelo de participação popular que resgate uma cidadania mais ativa, inaugurando o que denomina-se de democracia digital. O objetivo desta pesquisa foi desenvolver e implementar uma ferramenta, denominada "Extrator de Conhecimento Coletivo", com o propósito de conhecer o que um coletivo pensa a respeito de sua realidade a partir de pequenos relatos de seus participantes, dando voz à população num processo de democracia participativa. Os fundamentos teóricos baseiam-se em métodos de mineração de dados, sumarizadores extrativos e redes complexas. A ferramenta foi implementada e testada usando um banco de dados formado por opiniões de clientes a respeito de suas estadias em um Hotel. Os resultados apresentaram-se satisfatórios. Para trabalhos futuros, a proposta é que o Extrator de Conhecimento Coletivo seja o núcleo de processamento de dados de um espaço virtual onde a população pode se expressar e exercer ativamente sua cidadania / Abstract: The emergence of Information and Communication Technologies brought a new perspective to the strengthening of democracy in modern societies. The representative democracy, prevalent model in today's societies, crosses a crisis of credibility whose main consequence is the removal of citizen participation in politics, weakening democratic ideals. In this context, technology emerges as a possibility for construction of a new model of popular participation to rescue more active citizenship, inaugurating what is called digital democracy. The objective of this research was to develop and implement a tool called "Collective Knowledge Extractor", with the purpose of knowing what the collective thinks about his reality through small reports of its participants, giving voice to the people in a process participatory democracy. The theoretical foundations are based on methods of data mining, extractive summarizers and complex networks. The tool was implemented and tested using a database consisting of customer reviews about their stay in a Hotel. The results were satisfactory. For future work, the proposal is that the Extractor Collective Knowledge be the core data processing of a virtual space where people can express themselves and actively exercise their citizenship / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/259820
Date26 August 2018
CreatorsAngelo, Tiago Novaes, 1983-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Pagan, Cesar Jose Bonjuani, 1962-, Gudwin, Ricardo Ribeiro, 1967-, Rosa, João Luis Garcia, Coelho, Guilherme Palermo
Publisher[s.n.], Universidade Estadual de Campinas. Faculdade de Engenharia Elétrica e de Computação, Programa de Pós-Graduação em Engenharia Elétrica
Source SetsIBICT Brazilian ETDs
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format95 p. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0033 seconds