Made available in DSpace on 2018-08-02T00:01:56Z (GMT). No. of bitstreams: 1
tese_2856_TeseDoutoradoKarinSatieKomati.pdf: 23762070 bytes, checksum: aaba168a3997a0dc7f4d9efeecb48452 (MD5)
Previous issue date: 2011-12-16 / A análise e segmentação de cenas naturais é um tópico importante em processamento de imagens e visão computacional, com aplicações em diversas áreas, tais como navegação robótica, biometria, tratamento de imagens de satélite e inspeção de qualidade. Entretanto, a etapa de segmentação pode se tornar extremamente complicada devido à imensa variabilidade de cor, iluminação e texturas que se manifestam em uma imagem. Ou seja, é muito difícil implementar uma abordagem que consiga segmentar satisfatoriamente todas as nuances de uma cena, projetada numa imagem. Este trabalho busca o desenvolvimento de uma técnica não supervisionada e automática que possa segmentar imagens coloridas de cenas naturais. Para tanto, o ponto de partida foi a técnica conhecida como JSEG (JSegmentation) onde não se supõe um modelo específico de texturas e regiões, nem se realiza ajuste de parâmetros a partir de imagens. Em linhas gerais, o JSEG avalia a homogeneidade local de uma região, caracterizada por cor e textura, e assim realiza a segmentação, caracterizando regiões distintas e seus limites na imagem. Entretanto, é possível melhorar os seus resultados de segmentação adotando um critério adequado para distinguir informações intra e inter-regiões. Dentre as opções para tal melhoria, estão os operadores de detecção de bordas, mas eles não são compatíıveis com tal tarefa, pois são muito sensíveis a quaisquer bordas e não incluem bons critérios de homogeneidade de regiões. Neste contexto, multifractal se encaixa bem na definição de um critério de homogeneidade. Assim, este trabalho propõe três versões melhoradas para o algoritmo de segmentação de imagens coloridas JSEG, combinando o algoritmo clássico JSEG e o operador fractal local, que mede a dimensão fractal de cada pixel, aumentando o limite de detecção no J-image. Experimentos com imagens de cenas naturais coloridas do The Berkeley Segmentation Dataset and Benchmark (BSDS) são apresentados, mostrando uma melhoria dos resultados, qualitativa e quantitativamente falando, em comparação com o método clássico JSEG.
Identifer | oai:union.ndltd.org:IBICT/oai:dspace2.ufes.br:10/9701 |
Date | 16 December 2011 |
Creators | KARIN SATIE KOMATI |
Contributors | Klaus Fabian Coco, CONCI, A., Rauber, T. W., MASCARENHAS, N. D. D., SALLES, E. O. T., SARCINELLI FILHO, M. |
Publisher | Universidade Federal do Espírito Santo, Doutorado em Engenharia Elétrica, Programa de Pós-Graduação em Engenharia Elétrica, UFES, BR |
Source Sets | IBICT Brazilian ETDs |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFES, instname:Universidade Federal do Espírito Santo, instacron:UFES |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0021 seconds