Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. / Made available in DSpace on 2012-10-17T23:05:29Z (GMT). No. of bitstreams: 1
170947.pdf: 1203720 bytes, checksum: df17eb7dec03550658fab8c7fc2fabda (MD5) / Este trabalho apresenta um novo método para a classificação automática dos estágios do sono utilizando um canal do eletroencefalograma (C3). O sistema de classificação consiste de três módulos: o pré-processamento com extração de características, o classificador Mapa FAN, e um pós-processamento. A extração de característica consiste na ordenação e na redução de dimensão do sinal digital em cada época. O Mapa FAN é um sistema de classificação baseado na tecnologia de redes neurais artificiais, onde cada classe de padrões é representada por um mapa (matriz bidimensional). Para todo o padrão de entrada, cada mapa gera o grau de ativação daquele padrão em relação à classe que o mapa representa. Os Mapas foram treinados com os dados de um paciente e testados em outros sete pacientes, usando épocas de 30 segundos. Após a classificação feita pelo Mapa FAN, um sistema de regras de inferência, baseadas em estudos sobre a evolução do sono durante a noite, é aplicado para corrigir algumas falhas da classificação. Os resultados da classificação comparados com os de um especialista humano alcançaram uma concordância de 60 a 80%. Esses resultados estão dentro dos limites encontrados por outros pesquisadores, o que comprova a eficácia do modelo. Portando, o sistema Mapa FAN pode ser utilizado neste e em outros problemas de reconhecimento de padrões que apresentam multidimensionalidade.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufsc.br:123456789/79090 |
Date | January 2000 |
Creators | Dandolini, Gertrudes Aparecida |
Contributors | Universidade Federal de Santa Catarina, Rodriguez Martins, Alejandro |
Publisher | Florianópolis, SC |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | xv, 129 f.| il., grafs., tabs. |
Source | reponame:Repositório Institucional da UFSC, instname:Universidade Federal de Santa Catarina, instacron:UFSC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds