Recent advances in graphics processing units (GPUs) have resulted in massively parallel hardware that is easily programmable and widely available in commodity desktop computer systems. GPUs typically use single-instruction, multiple-data (SIMD) pipelines to achieve high performance with minimal overhead for control hardware. Scalar threads running the same computing kernel are grouped together into SIMD batches, sometimes referred to as warps. While SIMD is ideally suited for simple programs, recent GPUs include control flow instructions in the GPU instruction set architecture and programs using these instructions may experience reduced performance due to the way branch execution is supported by hardware. One solution is to add a stack to allow different SIMD processing elements to execute distinct program paths after a branch instruction. The occurrence of diverging branch outcomes for different processing elements significantly degrades performance using this approach. In this thesis, we propose dynamic warp formation and scheduling, a mechanism for more efficient SIMD branch execution on GPUs. It dynamically regroups threads into new warps on the fly following the occurrence of diverging branch outcomes. We show that a realistic hardware implementation of this mechanism improves performance by an average of 47% for an estimated area increase of 8%. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
Identifer | oai:union.ndltd.org:UBC/oai:circle.library.ubc.ca:2429/2268 |
Date | 11 1900 |
Creators | Fung, Wilson Wai Lun |
Publisher | University of British Columbia |
Source Sets | University of British Columbia |
Language | English |
Detected Language | English |
Type | Text, Thesis/Dissertation |
Format | 1157611 bytes, application/pdf |
Rights | Attribution-NonCommercial-NoDerivatives 4.0 International, http://creativecommons.org/licenses/by-nc-nd/4.0/ |
Page generated in 0.0015 seconds