Return to search

Modèles hiérarchiques et processus ponctuels spatio-temporels - Applications en épidémiologie et en sismologie

Les processus ponctuels sont souvent utilisés comme modèles de répartitions spatiales ou spatio-temporelles d'occurrences. Dans cette thèse, nous nous intéressons tout d'abord à des processus de Cox dirigés par un processus caché associé à un processus de Dirichlet. Ce modèle correspond à des occurrences cachées influençant l'intensité stochastique des occurrences observées. Nous généralisons la notion de " Shot noise Cox process " introduite par Moller et développons le traitement bayésien par un échantillonneur de Gibbs combiné à un algorithme de Metropolis-Hastings. Nous montrons que cette méthode MCMC est à sauts réversibles. Le modèle prend en compte, en effet, un nombre aléatoire de contributions cachées influençant l'intensité du processus ponctuel observé donc a un espace paramétrique de dimension variable. Nous focalisons l'inférence statistique sur l'estimation de la valeur espérée de chaque contribution cachée, le nombre espéré de contributions cachées, le degré d'influence spatiale de ces contributions et leur degré de corrélation. Le test d'égalité des contributions et celui de leur indépendance sont ainsi développés. L'utilité en épidémiologie et en écologie est alors démontrée à partir de données de Rubus fruticosa, Ibicella lutea et de mortalité dans les cantons de Georgia, USA. En termes de données observées, deux situations sont considérées: premièrement, les positions spatiales des occurrences sont observées entre plusieurs paires de dates consécutives; deuxièmement, des comptages sont effectués, au cours d'une période fixée, dans des unités d'échantillonnage spatiales. D'autre part, nous nous intéressons aux processus ponctuels à mémoire introduits par Kagan, Ogata et Vere-Jones, précurseurs de la statistique sismologique. En effet, les processus ponctuels spatio-temporels ont une place importante dans l'étude des catalogues sismiques puisque ces derniers sont généralement constitués d'événements sismiques datés et géo-référencés. Nous avons étudié un modèle ETAS (Epidemic Type Aftershock Sequence) avec une intensité d'arrière-plan indépendante du temps et plusieurs fonctions déclenchantes permettant d'intégrer les événements antérieurs récents. Cette approche est utilisée pour étudier la sismicité de l'arc des Petites Antilles. Une étude comparative des modèles Gamma, Weibull, Log-Normal et loi d'Omori modifiée pour les fonctions déclenchantes est menée. Nous montrons que la loi d'Omori modifiée ne s'ajuste pas aux données sismiques des Petites Antilles et la fonction déclenchante la plus adaptée est le modèle de Weibull. Cela implique que le temps d'attente entre répliques dans la zone des Petites Antilles est plus faible que celui des régions à sismicité décrite par la loi d'Omori modifiée. Autrement dit, l'agrégation des répliques après un événement majeur est plus prononcée dans la zone des Petites Antilles. La possibilité d'inclure une intensité d'arrière-plan suivant un processus de Dirichlet centré sur un processus spatial log-gaussien est discutée.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00841146
Date05 November 2012
CreatorsValmy, Larissa
PublisherUniversité des Antilles-Guyane
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0028 seconds