Return to search

Análise da rede de produtos comprados em conjunto no comércio eletrônico / Analysis of the network of products bought together in electronic commerce

Este trabalho aborda as áreas de teoria dos grafos, sistemas de recomendação, e comércio eletrônico, que já foram tema de diversas publicações ao longo das últimas décadas. Entretanto, o estudo da importância da utilização de medidas de centralidade de redes como atributos preditivos de modelos de aprendizado de máquina é um assunto que ainda não foi explorado pela literatura. Neste trabalho, além de relatarmos resultados que sugerem que essas medidas de centralidade podem aumentar a precisão dos modelos preditivos, também apresentamos os principais conceitos teóricos de redes complexas, como tipos de redes, caracterização, métricas de distância, além de propriedades de redes reais. Também apresentamos as ferramentas e metodologia utilizadas para o desenvolvimento de um webcrawler próprio, software necessário para a construção da rede de produtos comprados em conjunto no comércio eletrônico. Modelos de aprendizado de máquina foram treinados utilizando a base de produtos obtida pelo webcrawler, possibilitando a obtenção de modelos preditivos de estimativa de preços de produtos, e de previsão de probabilidade de ligação entre produtos da rede. A performance dos modelos preditivos obtidos são apresentadas. / This work approaches areas such as graph theory, recommendation systems, and electronic commerce, which have been chosen as topics for several publications over the last decades. Although, studying the importance of using network centrality measures as predictive features within machine learning models is a topic which was not yet explored on literature. In this work, besides reporting results which suggest that those centrality measures can increase the precision of predictive models, we also present the main theoretical concepts of complex networks, such as network types, characterization, distance metrics, besides some properties of real networks. We also present the tools and methodology used on the development of our own webcrawler, a software required for the generation of the network of products bought together in the electronic commerce. Machine learning models were trained using the product database obtained using the webcrawler, allowing the achievement of predictive models for product price estimation, and also link prediction between products of the network. The performance of the predictive models are also presented.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-21082019-165653
Date22 May 2019
CreatorsSantos, Rafael Joseph Pagliuca dos
ContributorsRodrigues, Francisco Aparecido
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0024 seconds