Return to search

Chemical Identification and Organoleptic Evaluation of Iodine and Iodinated Disinfection By-Products Associated with Treated Spacecraft Drinking Water

Aboard the International Space Station, potable water will likely be produced from recycled wastewater. The National Aeronautic and Space Administration (NASA) plans to use iodine as a disinfectant, and, consequently, the formation of iodinated disinfection by-products (IDBPs) requires investigation. Objectives of this research were to determine possible precursors of IDBPs, identify IDBPs formed, and apply flavor profile analysis (FPA) as a tool to evaluate water qaulity. Experiments were performed by separately reacting iodine with each of the following organic compounds: methanol, ethanol, 1-propanol, 2-propanol, 1-methoxy-2-propanol, acetone, and formaldehyde. NASA previously identified all of these compounds in wastewater sources under consideration for recycling into potable water. Experiments were performed at pH 5.5 and 8, iodine concentrations of 10 and 50 mg/L, and organic concentrations of 5 and 50 mg/L. Gas chromatography/mass spectrometry was used to identify and monitor the concentrations of organic species. Spectrophotometry was used to monitor the iodine concentration. Acetone was the only compound identified as an IDBP precursor and it reacted to produce iodoacetone and iodoform. Concentrations of iodoform from 0.34 mg/L to 8.637 mg/L were produced at conditions that included each pH level, iodine concentration, and acetone concentration. The greatest iodoform concentration was produced at pH 8 from 50 mg/L of iodine and acetone. FPA indicated that the odor threshold concentration (OTC) of iodoform was 1.5 ug/L, and the OTC of iodine was 500 ug/L. Both iodine and iodoform have medicinal odors, making it difficult to distinguish each compound when present in a mixture. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/36642
Date11 February 1997
CreatorsDodd, Jennifer Peters
ContributorsCivil Engineering, Dietrich, Andrea M., Hoehn, Robert C., Gallagher, Daniel L.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
Relationjpd3.PDF

Page generated in 0.0018 seconds