Tissue regeneration is a complex and highly orchestrated process dependent on cells with the potential to restore structures and functions and on controlling factors from the tissue microenvironment. Hematopoietic tissue has a high ability to regenerate, which is attributed to the presence of stem cells, but the regeneration of severely damaged adult tissue is still only partially understood. Hematopoietic tissue provides a unique opportunity to study tissue regeneration due to its well-established steady- state structure and function, easy accessibility, advanced research methods, and well-defined embryonic, fetal, and adult stages of development. Embryonic/fetal liver hematopoiesis and adult hematopoiesis recovering from damage share the needto expand populations of progenitors and stem cells in parallel with increasing production of mature blood cells. We analyzed adult hematopoiesis in mice subjected to a submyeloablative dose (6 Gy) of gamma radiation, in which only a few cells with reconstituting capacity survived. We targeted the period of regeneration characterized by the renewed massive production of mature blood cells and the ongoing expansion of immature hematopoietic cells. Cells from the top of the hematopoietic hierarchy, hematopoietic stem cells, and multipotent progenitors are almost missing...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:453507 |
Date | January 2021 |
Creators | Faltusová, Kateřina |
Contributors | Nečas, Emanuel, Hofer, Michal, Filipp, Dominik |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds