Return to search

Functional Analysis of Notch Signaling during Vertebrate Retinal Development

The process of cell fate determination, which establishes the vastly diverse set of neural cell types found in the central nervous system, remains poorly understood. During retinal development, multipotent retinal progenitor cells generate seven major cell types, including photoreceptors, interneurons, and glia, in an ordered temporal sequence. The behavior of these progenitor cells is influenced by the Notch pathway, a widely utilized signal during embryogenesis which can regulate proliferation and cell fate decisions. To examine the underlying genetic changes that occur when Notch1 is removed from individual retinal cells, microarray analysis of single cells from wild type or Notch1 conditional knockout retinas was performed. Notch1 deficient cells downregulated progenitor and cell cycle marker genes, while robustly upregulating genes associated with rod genesis. Single wild type cells expressed markers of both rod photoreceptors and interneurons, suggesting that these cells were in a transitional state. In order to examine the role of Notch signaling in cell fate specification separate from its role in proliferation, Notch1 was genetically removed specifically from newly postmitotic cells. Notch1 deficient cells preferentially became cone photoreceptors at embryonic stages, and rod photoreceptors at postnatal stages. In both cases, this cell fate change occurred at the expense of the other cell types normally produced at that time. In addition, single cell profiling revealed that Inhibitor of differentiation 1 and 3 genes were robustly downregulated in Notch1 deficient cells. Ectopic expression of these genes during postnatal development in wild type retinas was sufficient to drive production of progenitor/Müller glial cells. Moreover, Id1 and 3 partially rescued the production of Müller glial cells and bipolar cells in the absence of Notch1, even in newly postmitotic cells. We propose that after cell cycle exit, retinal precursor cells transition through a period in which they express marker genes of several different cell types as they commit to a fate, likely endowed by their progenitor cell. Specifically, cells that will become bipolars or Müller glia depend on Id-mediated Notch signaling during this transitional state to take on their respective fates.

Identiferoai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/10344746
Date21 June 2013
CreatorsMizeracka, Karolina
ContributorsCepko, Connie
PublisherHarvard University
Source SetsHarvard University
Languageen_US
Detected LanguageEnglish
TypeThesis or Dissertation
Rightsopen

Page generated in 0.0016 seconds