Return to search

Structures with Memory: Programmed Multistability and Inherent Sensing and Computation

<p>Structures with inherent shape change capabilities enable adaptive, efficient designs without the weight and complexity of external actuators and sensors. Morphing structures are found in nature: plants are able to achieve fast motion without muscular or nervous systems. For example, the Venus flytrap snaps to a closed state with spatially distributed curvatures in less than one second. In contrast, synthetic shape change has been limited by a trade-off between complexity and speed. Shape memory polymers (SMPs) can remember complex shapes, but morphing is slow and one-way. Multistability due to mechanical buckling is fast and reversible, but it has been limited to simple shapes. Furthermore, many examples of biological shape change follow logical patterns with mechanisms that selectively respond to environmental stimuli. This suggests that synthetic morphing structures may also lend themselves to alternative forms of sensing, memory, and logic.</p>
<p><br></p>
<p>In this research, we introduce a new method of using SMPs in combination with the hierarchical architectures of pre-strained multistable laminates to create switchable multistable structures (SMS). An SMS can remember multiple permanent shapes and reversibly snap between them. We use extrusion-based 3D printing to encode contrasting shape memory-based pre-strain fields in a bilayer. Above the SMP’s glass transition temperature, the SMS becomes compliant and remembers multiple encoded permanent shapes with fast snap-through between them. Below the transition temperature, the SMS regains its stiffness and is fixed in a single state. The geometric freedom of 3D printing enables the design and manufacture of bioinspired structures with complex pre-strain fields and deflections. The developed printing method is applied in multiple subsequent studies, including mechanical pixels, self-folding spring origami structures, and multistable structures printed with thermoset composite inks. </p>
<p><br></p>
<p>The highly nonlinear behavior of bistable, pre-strained structures makes their design difficult and nonintuitive. Generally, these structures are designed using a slow, iterative process with finite element analysis (FEA). We aim to solve the inverse optimization problem: start with target stable states and solve for the necessary pre-strain distributions. To this end, we develop and implement the switching tunneling method (STM) to design pre-strained,</p>
<p>multistable structures. Instead of FEA, we leverage analytical solutions for gradient-based optimization. Tunneling allows for the efficient search of a design space which may contain multiple local and global minima. Switching enables us to take advantage of two different function transformations, depending on if the search is far from or close to a minimum. The STM is validated through FEA and experiments for both conventional and variable</p>
<p>pre-strain bistable structures.</p>
<p><br></p>
<p>Structures designed to react to external conditions or events offer the opportunity to directly integrate sensing, memory, and computation into a structure. This concept is explored using metasheets composed of locally bistable unit cells, which display spatiotemporal mechanical sensing (mechanosensing) and memory. A unit cell consists of a bistable dome with a piezoresistive strip at the base; the resistance indicates the state of the dome. The mechanics of bistability offer inherent filtering and nonlinear signal amplification capabilities, tunable via geometric parameters. Metasheet arrays of these unit cells display distributed sensing capabilities, as well as hierarchical multistability.</p>
<p><br></p>
<p>We explore the use of time-dependent material properties combined with the mechanics of multistability to encode many unique values within a single mechanosensor unit cell, beyond binary memory. When the piezoresistive material is viscoelastic, cyclic loading causes cumulative changes in both the ground and inverted state resistances. Effectively, the metamaterial is able to count how many times an external force has been applied; this count is stored in the metamaterial’s intrinsic, measurable properties.</p>
<p><br></p>
<p>This work demonstrates the importance of incorporating memory concepts into structural design, which enables multistability with complex stable shapes, as well as spatiotemporal sensing and memory capabilities. Engineered systems require increasingly adaptive and responsive structures to improve efficiency. The incorporation of inherent memory and sensing enables the complex behaviors needed to interact with unstructured environments</p>
<p>and biological features, a pressing issue for aerospace, soft robotics and biomedical devices. The methodology developed here to manufacture, design, and analyze multistable structures advances the state of the art and makes their implementation more practical.</p>

  1. 10.25394/pgs.23739999.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/23739999
Date26 July 2023
CreatorsKatherine Simone Riley (16642554)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/Structures_with_Memory_Programmed_Multistability_and_Inherent_Sensing_and_Computation/23739999

Page generated in 0.0022 seconds