Nous développons des algorithmes parallèles pour la résolution de problèmes non-linéaires de grande taille. Les cadres d'application sont la simulation de matériaux hyperélastiques incompressibles en grandes déformations et l'étude des milieux poreux, dont les modélisations choisies font apparaître des inconnues en déplacement et en pression.<br /><br />Nous retenons une stratégie éléments-finis associée à un solveur Newton-Raphson et une décomposition de domaine sans recouvrement combinée à un solveur de Krylov. <br /><br />Nous proposons des améliorations pour adapter ces approches à nos problèmes, puis pour des cas plus exigeants nous définissons une nouvelle approche de décomposition de domaine, appelée approche hybride, permettant de mieux respecter la physique des phénomènes et unifiant les approches classiques. Nous proposons également des stratégies d'accélération du processus non-linéaire. Enfin un cadre orienté objet est exposé pour la mise en oeuvre de l'ensemble des méthodes proposées.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00277771 |
Date | 11 December 2003 |
Creators | Gosselet, Pierre |
Publisher | Université Pierre et Marie Curie - Paris VI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds