La version classique du problème d'ordonnancement de projet à contraintes de ressources (RCPSP) consiste à trouver un ordonnancement, de durée minimale, des activités d'un projet entrant en compétition sur l'usage de ressources renouvelables, cumulatives et disponibles en quantité limité. <br />La réputation d'extrême difficulté du RCPSP a mené nombre de chercheurs à proposer de nouvelles méthodes de résolution exacte toujours plus performantes pour ce problème. Malgré cela, les instances de tailles réelles, qui se recontrent fréquemment, par exemple dans la gestion de production industrielle, sont encore loins d'être résolues optimalement. Il est donc intéressant, en combinant les acquis des travaux précédents, en particulier en programmation par contraintes (PPC) et en programmation linéaire (PL), de se pencher sur des méthodes exactes innovantes ou encore de développer des procédures d'évaluation par défaut, pour permettre une meilleure estimation de la performance des heuristiques sur le RCPSP. Ce travail de thèse entre dans ce cadre.<br /><br />Dans un premier temps, nous nous attachons au calcul de bornes inférieures pour le RCPSP par relaxation lagrangienne. D'une part, nous cherchons à accélerer le calcul de la borne de Brucker et Knust (obtenue par hybridation de PPC et de génération de colonnes) en résolvant le programme linéaire sous-jacent par relaxation lagrangienne (méthodes de sous-gradient et de génération de contraintes). D'autre part, nous appliquons le même principe de relaxation lagrangienne, sur la formulation linéaire initiale de Mingozzi et al. dont est extraite la relaxation préemptive utilisée par Brucker et Knust. Une partie du problème se réduit alors, comme indiqué par Möhring et al., au calcul d'une coupe minimale dans un graphe.<br /> <br />Nous étudions ensuite, un second type de bornes inférieures, obtenu par des méthodes de coupes basées sur les relaxations continues de deux formulations linéaires entières. Ces programmes linéaires sont au préalable resserés par des techniques éprouvées de propagation de contraintes, dont la règle globale du shaving. L'originalité de notre méthode repose essentiellement dans la génération des coupes qui sont, en grande partie, directement déduites des règles de propagation de contraintes.<br /><br />Enfin, nous proposons une méthode originale de résolution exacte pour le RCPSP, basée sur la procédure de Resolution Search de Chvàtal, une alternative aux méthodes de Branch-and-Bound classiques et qui se rapproche du Dynamic Backtracking en programmation par contraintes. Dans Resolution Search, l'espace de recherche ne se présente pas comme un arbre, puisqu'il s'agit, à chaque fois qu'un noeud terminal est rencontré, de rechercher par backtrakings successifs, les fixations minimales qui font de ce noeud un noeud terminal. L'ensemble des ces fixations est alors stocké de manière intelligente de façon à les exclure de l'espace de recherche. Resolution Search a été initialement développée pour la résolution de programmes linéaires en variables binaires, mais n'a semble-t'il jamais été employée dans le cadre de problèmes spécifiques.<br />Dans le but de prouver son efficacité, nous commencons par l'appliquer basiquement à deux formulations linéaires en variables binaires pour le RCPSP et la comparons à une version tout aussi basique de Branch-and-bound.<br /> Nous en poursuivons l'étude en utilisant des règles de branchement et d'évaluation ayant déjà prouvé leur efficacité dans des implémentations classiques de méthodes arborescentes pour le RCPSP, telles que celles de Brucker et al., Carlier et Latapie, Demeulemeester et Herroelen.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00293564 |
Date | 18 December 2003 |
Creators | Demassey, Sophie |
Publisher | Université d'Avignon |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds