La régulation adaptative des feux de signalisation est un problème très important. Beaucoup de chercheurs travaillent continuellement afin de résoudre les problémes liés à l’embouteillage dans les intersections urbaines. Il devient par conséquent très utile d’employer des algorithmes intelligents afin d’améliorer les performances de régulation et la qualité du service. Dans cette thèse, nous essayons d'étudier ce problème d’une part à travers une modèlisation microscopique et dynamique en temps discret, et d’autre part en explorant plusieurs approches de résoltion pour une intersection isolée ainsi que pour un réseau distribué d'intersections.La première partie se concentre sur la modélisation dynamique des problèmes des feux de signalisation ainsi que de la charge du réseau d’intersections. Le mode de la “séquence de phase adaptative” (APS) dans un plan de feux est d'abord considéré. Quant à la modélisation du contrôle des feux aux intersections, elle est formulée grâce à un processus décisionnel de markov (MDP). En particulier, la notion de “l'état du système accordable” est alors proposée pour la coordination du réseau de trafic. En outre, un nouveau modèle de “véhicule-suiveur” est proposé pour l'environnement de trafic. En se basant sur la modélisation proposée, les méthodes de contrôle des feux dans cette thèse comportent des algorithmes optimaux et quasi-optimaux. Deux algorithmes exacts de résolution basées sur la programmation dynamique (DP) sont alors étudiés et les résultats montrent certaines limites de cette solution DP surtout dans quelques cas complexes où l'espace d'états est assez important. En raison de l’importance du temps d’execution de l'algorithme DP et du manque d'information du modèle (notamment l’information exacte relative à l’arrivée des véhicules à l’intersection), nous avons opté pour un algorithme de programmation dynamique approximative (ADP). Enfin, un algorithme quasi-optimal utilisant l'ADP combinée à la méthode d’amélioration RLS-TD (λ) est choisi. Dans les simulations, en particulier avec l'intégration du mode de phase APS, l'algorithme proposé montre de bons résultats notamment en terme de performance et d'efficacité de calcul. / Adaptive traffic signal control is a decision making optimization problem. People address this crucial problem constantly in order to solve the traffic congestion at urban intersections. It is very popular to use intelligent algorithms to improve control performances, such as traffic delay. In the thesis, we try to study this problem comprehensively with a microscopic and dynamic model in discrete-time, and investigate the related algorithms both for isolated intersection and distributed network control. At first, we focus on dynamic modeling for adaptive traffic signal control and network loading problems. The proposed adaptive phase sequence (APS) mode is highlighted as one of the signal phase control mechanisms. As for the modeling of signal control at intersections, problems are fundamentally formulated by Markov decision process (MDP), especially the concept of tunable system state is proposed for the traffic network coordination. Moreover, a new vehicle-following model supports for the network loading environment.Based on the model, signal control methods in the thesis are studied by optimal and near-optimal algorithms in turn. Two exact DP algorithms are investigated and results show some limitations of DP solution when large state space appears in complex cases. Because of the computational burden and unknown model information in dynamic programming (DP), it is suggested to use an approximate dynamic programming (ADP). Finally, the online near-optimal algorithm using ADP with RLS-TD(λ) is confirmed. In simulation experiments, especially with the integration of APS, the proposed algorithm indicates a great advantage in performance measures and computation efficiency.
Identifer | oai:union.ndltd.org:theses.fr/2015BELF0279 |
Date | 11 December 2015 |
Creators | Yin, Biao |
Contributors | Belfort-Montbéliard, El Moudni, Abdellah, Dridi, Mahjoub |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds