L'émotion est indissociable des processus cognitifs et joue par conséquent un rôle majeur dans la prise de décision. De ce fait, elle occupe une place de plus en plus importante dans la recherche scientifique actuelle. L'objectif de cette thèse est de révéler l'intérêt que peut présenter une approche émotionnelle, et de prouver que des modèles informatiques dotés d'émotions artificielles peuvent dans certains cas s'avérer plus performants que leurs équivalents purement cognitifs. Partant de ce constat, deux modèles de l'émotion ont été réalisés sous différentes perspectives d'étude. Ils soulignent l'impact de l'ajout d'une dimension émotionnelle dans l'élaboration d'une décision rapide, efficace et adaptée. Le premier modèle développé utilise un graphe de représentation de stratégies afin de résoudre un exercice de mathématiques proposé à des élèves de CM2, intitulé "problème des Cascades". L'émotion y est représentée en tant que valuation des arêtes au sein du graphe, la dynamique de ce dernier étant assurée par un algorithme fourmi. Les tests effectués sur deux versions, l'une émotionnelle et l'autre purement cognitive, montrent que l'utilisation d'un modèle émotionnel permet une résolution plus efficace et adaptative. Par ailleurs, un second modèle, nommé GAEA vise à simuler un robot équipé de capteurs et effecteurs, et plongé dans un environnement proie-prédateurs au sein duquel il doit survivre. Son comportement est déterminé par son programme interne, évoluant grâce à un algorithme de programmation génétique linéaire manipulant une population d'individus-programmes. Les résultats sont prometteurs et indiquent une évolution de la population vers des individus au comportement de plus en plus adapté, et dont l'activité interne est analogue à l'émergence de réactions émotionnelles pertinentes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00696675 |
Date | 22 November 2011 |
Creators | Mahboub, Karim |
Publisher | Université du Havre |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.002 seconds