Return to search

Projeções multidimensionais para a análise de fluxos de dados / Multidimensional projections for data stream analysis

As técnicas de projeção multidimensional tornaram-se uma ferramenta de análise importante. Elas buscam mapear dados de um espaço multidimensional para um espaço visual, de menor dimensão, preservando as estruturas de distância ou de vizinhança no mapa visual produzido. Apesar dos recentes avanços, as técnicas existentes ainda apresentam deficiências que prejudicam a sua utilização como ferramentas exploratórias em certos domínios. Um exemplo está nos cenários streaming, nos quais os dados são produzidos e/ou coletados de forma contínua. Como a maioria das técnicas de projeção necessitam percorrer os dados mais de uma vez para produzir um layout final, e fluxos normalmente não podem ser carregados por completo em memória principal, a aplicação direta ou mesmo a adaptação das técnicas existentes em tais cenários é inviável. Nessa tese de doutorado é apresentado um novo modelo de projeção, chamado de Xtreaming, no qual as instâncias de dados são visitadas apenas uma vez durante o processo de projeção. Esse modelo é capaz de se adaptar a mudanças nos dados conforme eles são recebidos, atualizando o mapa visual para refletir as novas estruturas que surgem ao longo do tempo. Os resultados dos testes mostram que o Xtreaming é muito competitivo em termos de preservação de distâncias e tempo de execução se comparado com técnicas do estado-da-arte. Também é apresentada uma nova técnica de projeção multidimensional, chamada de User-assisted Projection Technique for Distance Information (UPDis), que foi projetada para permitir a intervenção do usuário exigindo apenas informações de distância entre as instâncias, e que é utilizada como parte do Xtreaming. Os resultados também mostram que a UPDis é tão rápida, precisa e flexível quanto as técnicas do estado-da-arte. / Multidimensional Projection techniques have become an important analytics tool. They map data from a multidimensional space into a visual space preserving the distance or neighborhood structures on the produced layout. Despite the recent advances, existing techniques still present drawbacks that impair their use as exploratory tools on certain domains. An example is the streaming scenario, in which data are captured or produced continuously. Since most projection techniques need to traverse the data more than once to produce a final layout, and streaming data typically cannot be completely loaded into the main memory, the direct use or even adaptation of the existing techniques in such scenarios is infeasible. In this dissertation, we present a novel projection model, called Xtreaming, wherein the data instances are visited only once during the projection process. This model is able to adapt itself to the changes in data as data is received, updating the visual layout to reflect the new structures that emerge over time. The tests show that Xtreaming is very competitive regarding distance preservation and running time when compared with state-of-the-art projection techniques. We also present a new multidimensional projection technique, called User-assisted Projection Technique for Distance Information (UPDis), that was designed to allow user intervention requiring only distance information between data instances. UPDis is used as part of the Xtreaming model. The results show that UPDis is as fast, accurate and flexible as state-of-the-art techniques.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-12012017-150124
Date17 November 2016
CreatorsNeves, Tácito Trindade de Araújo Tiburtino
ContributorsPaulovich, Fernando Vieira
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.002 seconds