A tecnologia atual permite armazenar grandes quantidades de dados, no entanto sua exploração e compreensão resultam em um enorme desafio devido não só ao tamanho dos conjuntos produzidos mas também sua complexidade. Nesse sentido a visualização de informação vem se mostrando um recurso extremamente poderoso para ajudar a interpretar e extrair informação útil desse universo de dados. Dentre as abordagens existentes, as tecnicas de projeção multidimensional estão emergindo como um instrumento de visualização importante em aplicações que implicam a análise visual de dados de alta dimensão devido ao poder analítico que essas oferecem na exploração de relações de similaridade e correlação de dados abstratos. Contudo, os resultados obtidos por tais técnicas estão intimamente ligados à qualidade do espaço de características que descrevem os dados sendo processados. Se o espaço for bem formado e refletir as relações de similaridade esperadas por um usuário, os resultados nais serão satisfatórios. Caso contrário pouca utilidade terão as representações visuais geradas. Neste projeto de mestrado técnicas de projeção multidimensional são empregadas, para, não somente explorar conjuntos de dados multidimensionais, mas também para servir como um guia em um processo que visa \"moldar\" espaços de características. A abordagem proposta se baseia na combinação de projeções de amostras e mapeamentos locais, permitindo ao usuário de forma interativa transformar os atributos dos dados por meio da modicação dessas projeções. Mais especicamente, as novas relações de similaridade criadas pelo usuário na manipulação das projeções das amostras são propagadas para o espaço de característica que descreve os dados, transformando-o em um novo espaço que reflita essas relações, ou seja, o ponto de vista do usuário sobre as semelhanças e diferenças presentes nos dados. Resultados experimentais mostram que a abordagem desenvolvida nesse projeto pode com sucesso transformar espaços de características com base na manipulação da projeção de pequenas amostras, melhorando a coesão e separação de grupos. Com base no ferramental criado, um sistema de recuperação de imagens por conteúdo e sugerido, mostrando que a abordagem desenvolvida pode ser bastante útil nesse tipo de aplicação / Although the current technology allows storing large volumes of data, their exploration and understanding remains as challenges not only due to the size of the produced datasets but also their complexity. In this sense, the information visualization has proven to be an extremely powerful instrument to help users to interpret and extract useful information from this universe of data. Among the existing approaches, multidimensional projection techniques are emerging as an important visualization tool in applications involving visual analysis of high dimensional data due to the analytical power that these techniques oer in the exploitation of similarity relations and abstract data correlation. However, the results obtained by these techniques are closely tied to the quality of the feature space which describes the data being processed. If the space is well formed and reflect the similarity relations expected by an user, the nal results will be satisfactory. Otherwise, little utility will have the created visual representations. In this master\'s project, multidimensional projections techniques are employed not only to explore multidimensional data sets, but also to serve as a guide in a process that aims to \"mold\" features spaces. The proposed approach is based on the combination of projections of samples and local mappings, allowing the user to interactively transform the data attributes by modifying these projections. Specifically, the new similarity relations created by the user in manipulating the projections of the samples are propagated to the feature space that describes the data, transforming it into a new space that reflects these relationships, i.e., the point of view of the user about the similarities and dierences in the data. Experimental results show that the approach developed in this project can successfully transform feature spaces based on the manipulation of projections of small samples, improving the cohesion and separation of groups. Based on the created framework, a content-based image retrieval system is suggested, showing that the developed approach can be very useful in this type of application
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-20022013-163023 |
Date | 24 October 2012 |
Creators | Mamani, Gladys Marleny Hilasaca |
Contributors | Paulovich, Fernando Vieira |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.002 seconds