La surveillance de phénomènes physiques à l’aide d’un réseau de capteurs (autonomes mais communicants) est fortement contrainte en consommation énergétique, principalement pour la transmission de données. Dans ce cadre, cette thèse propose des méthodes de traitement du signal permettant de réduire les communications sans compromettre la précision des calculs ultérieurs. La complexité de ces méthodes est réduite, de façon à ne consommer que peu d’énergie supplémentaire. Deux éléments servent à leur synthèse : la compression dès l’acquisition (Acquisition compressive) et la quantification grossière (sur 1 bit). D’abord, on étudie le corrélateur compressé, un estimateur qui permet d’évaluer les fonctions de corrélation, temps de retard et densités spectrales en exploitant directement des signaux compressés. Ses performances sont comparées au corrélateur usuel. Si le signal à traiter possède un support spectral étroit, l’estimateur proposé s’avère sensiblement meilleur que l’usuel. Ensuite, inspirés par les corrélateurs à forte quantification des années 50 et 60, deux nouveaux corrélateurs sont étudiés : le compressé sur 1 bit et le compressé hybride, qui peuvent également surpasser les performances de leurs contreparties non-compressées. Finalement, on montre la pertinence de ces méthodes pour les applications envisagées à travers l’exploitation de données réelles. / Monitoring physical phenomena by using a network of sensors (autonomous but interconnected) is highly constrained in energy consumption, mainly for data transmission. In this context, this thesis proposes signal processing tools to reduce communications without compromising computational accuracy in subsequent calculations. The complexity of these methods is reduced, so as to consume only little additional energy. Our two building blocks are compression during signal acquisition (Compressive Sensing) and CoarseQuantization (1 bit). We first study the Compressed Correlator, an estimator which allows for evaluating correlation functions, time-delay, and spectral densities directly from compressed signals. Its performance is compared with the usual correlator. As we show, if the signal of interest has limited frequency content, the proposed estimator significantly outperforms theconventional correlator. Then, inspired by the coarse quantization correlators from the 50s and 60s, two new correlators are studied: The 1-bit Compressed and the Hybrid Compressed, which can also outperform their uncompressed counterparts. Finally, we show the applicability of these methods in the context of interest through the exploitation of real data.
Identifer | oai:union.ndltd.org:theses.fr/2017GREAT085 |
Date | 11 December 2017 |
Creators | Zebadúa, Augusto |
Contributors | Grenoble Alpes, Amblard, Pierre-Olivier |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0024 seconds