Return to search

Multiple prediction from incomplete data with the focused curvelet transform

Incomplete data represents a major challenge for a successful prediction and subsequent removal of multiples. In this paper, a new method will be represented that tackles this challenge in a two-step approach. During the first step, the recenly developed curvelet-based recovery by sparsity-promoting inversion (CRSI) is applied to the data, followed by a prediction of the primaries. During the second high-resolution step, the estimated primaries are used to improve the frequency content of the recovered data by combining the focal transform, defined in terms of the estimated primaries, with the curvelet transform. This focused curvelet transform leads to an improved recovery, which can subsequently be used as input for a second stage of multiple prediction and primary-multiple separation.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:BVAU.2429/601
Date January 2007
CreatorsHerrmann, Felix J.
PublisherSociety of Exploration Geophysicists
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
Typetext
RightsHerrmann, Felix J.

Page generated in 0.0021 seconds