Název práce: O síle slabých rozšírení teorie V0 Autor: Sebastian Müller Katedra: Katedra Algebry Vedoucí disertační práce: Prof. RNDr. Jan Krajíček, DrSc., Katedra Algebry. Abstrakt: V predložené disertacní práci zkoumáme sílu slabých fragmentu arit- metiky. Činíme tak jak z modelově-teoretického pohledu, tak z pohledu důkazové složitosti. Pohled skrze teorii modelu naznačuje, že malý iniciální segment libo- volného modelu omezené aritmetiky bude modelem silnější teorie. Jako příklad ukážeme, že každý polylogaritmický řez modelu V0 je modelem VNC. Užitím známé souvislosti mezi fragmenty omezené aritmetiky a dokazatelností v ro- zličných důkazových systémech dokážeme separaci mezi rezolucí a TC0 -Frege systémem na náhodných 3CNF-formulích s jistým poměrem počtu klauzulí vůci počtu proměnných. Zkombinováním obou výsledků dostaneme slabší separační výsledek pro rezoluci a Fregeho důkazové systémy omezené hloubky. Klíčová slova: omezená aritmetika, důkazová složitost, Fregeho důkazový systém, Fregeho důkazový systém omezené hloubky, rezoluce Title: On the Power of Weak Extensions of V0 Author: Sebastian Müller Department: Department of Algebra Supervisor: Prof. RNDr. Jan Krajíček, DrSc., Department of Algebra....
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:328691 |
Date | January 2013 |
Creators | Müller, Sebastian Peter |
Contributors | Krajíček, Jan, Thapen, Neil, Kolodziejczyk, Leszek |
Source Sets | Czech ETDs |
Language | English |
Detected Language | Unknown |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0019 seconds