Return to search

A Study of Rough Surface Scattering Phenomena in the LMDS Band (28 GHz)

In this study, the properties of the reflected paths and scattering phenomena were investigated in the LMDS band (28 GHz). We used the newly developed sampling swept time delay short pulse (SSTDSP) sounder to collect field data in certain locations on the Virginia Tech campus. The sounder collected the channel impulse response analog waveform, sampled, digitized and reconstructed it. The stored data were used to produce the power delay profile and other channel parameters. In particular, we collected scattered and reflected data regarding the channel response with different incident angle and distance set-ups from brick and limestone walls. We used the reflected pulse width and maximum excess delay derived from each power delay profile to analyze the rough surface scattering phenomena. We found that limestone and brick walls exhibited some diffuse scattering. The reflected pulse of a limestone wall had more maximum excess delay spread than did a brick wall at -15dB power threshold. The mean maximum excess delay for the reflected pulse of the limestone wall measurement set-ups was more than two times that of the brick wall. With equal transmitter and receiver distances to the wall, we found that as the incident angle increased, the maximum excess delay decreased but the perpendicular reflection coefficient increased. It is recommended that for future study, a second generation SSTDSP sounder will replicate the measurement with larger distance and angle set-ups as well as in non-line-of-sight areas. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/31439
Date18 March 2003
CreatorsDillard, Cindy Lin
ContributorsElectrical and Computer Engineering, Bostian, Charles W., Sweeney, Dennis G., Midkiff, Scott F.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationCDillardThesis.pdf

Page generated in 0.0225 seconds