Open rotors are known to have significant advantages in terms of propulsive efficiency. These advantages translate directly in reduced fuel burn so that they nowadays benefit from a surge of interest. At the same time, recent advances in numerical simulations make the application of multidisciplinary optimization for the demanding design of transonic propeller blades, an affordable option. Therefore, an optimization method in which the performance objectives of aerodynamics, aeroacoustics and aeroelasticity compete against each other, is developed and applied for the design of high-speed single-rotation propellers. The optimization is based on Multi-Objective Differential Evolution (MODE).This technique is a particular kind of evolutionary algorithm that mimics the natural evolution of populations by relying on the selection, recombination and eventually mutation of blade designs, each of them being represented by a vector of design variables (e.g. chord width, tip sweep, etc). MODE has the advantage of dealing concurrently with all the objectives in the selection of potentially promising designs among a population. In order to keep the computational cost within reasonable margins, the assessment of the performance of proposed designs is done in a two-level approach. A metamodel provides performance estimates for each proposed design at extremely low computational effort while high-fidelity analysis codes provide accurate performance values on some promising designs at much higher cost. To safeguard the accuracy of the estimates, the metamodel is initially trained on a population that is specifically assembled for that purpose. The training is repeated from time to time with the high-fidelity performance values of promising designs. Different high-fidelity tools have been developed and used for the assessment of performance.The CFD-tool performs steady RANS simulations of a single blade passage of the isolated propeller in free air under zero angle of attack. These simulations provide the aerodynamic performance values. The full propeller is modelled thanks to cyclic boundary conditions. The k - ε turbulence model is used in combination with wall treatment. Adiabatic no-slip wall conditions are imposed on the spinner and blade surfaces whereas the test-section radial boundary is reproducing the effects of a pressure far-field. This approach has proven its robustness and, above all, its accuracy as satisfactory agreement with experimental results has been found for different operating conditions over a wide range of blade shapes, as well as sufficient grid independency. In the post-processing of the aerodynamic results, the Sound Pressure Level (SPL)is computed for tonal noise at various observer locations by the aeroacoustic solver(CHA). Formulation 1A from Farassat is used for this purpose. This formulation is related to the inhomogeneous wave equation derived from Lighthill's acoustic analogy by Ffowcs Williams and Hawkings (FW-H). It benefits from the partial decoupling of the acoustic and aerodynamic aspects and is particularly suited to compute the noise from propellers. The thickness noise and loading noise are expressed by separate equations in the time-domain whereas the quadrupole source term is dropped from the original FW-H equation. The blade surface is chosen as integration surface and a newly developed truncation technique is applied to circumvent the mathematical singularity arising when parts of the blade reach sonic conditions in terms of kinematics with respect to the observer. This approach delivers accurate values at acceptable computational cost. Besides, CSM-computations make use of a finite elements solver to compute the total mass of the blade as well as the stresses resulting from the centrifugal and aerodynamic forces. Considering the numerous possibilities to tailor the blade structure so that it properly takes on the stresses, only a simplified blade model is implemented. [...]
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00692363 |
Date | 08 November 2011 |
Creators | Marinus, Benoît |
Publisher | Ecole Centrale de Lyon |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0019 seconds