Return to search

Propriedades dinâmicas em redes de Kleinberg / Dynamical properties of Kleinberg’s network

SILVA, Samuel Morais da. Propriedades dinâmicas de redes de Kleinberg. 2015. 71 f. Dissertação (Mestrado em Física) - Programa de Pós-Graduação em Física, Departamento de Física, Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015. / Submitted by Edvander Pires (edvanderpires@gmail.com) on 2015-10-28T21:53:53Z
No. of bitstreams: 1
2015_dis_smsilva.pdf: 6345616 bytes, checksum: 705401ad498eb92e473d5a63a9e41c49 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2015-10-28T21:54:08Z (GMT) No. of bitstreams: 1
2015_dis_smsilva.pdf: 6345616 bytes, checksum: 705401ad498eb92e473d5a63a9e41c49 (MD5) / Made available in DSpace on 2015-10-28T21:54:08Z (GMT). No. of bitstreams: 1
2015_dis_smsilva.pdf: 6345616 bytes, checksum: 705401ad498eb92e473d5a63a9e41c49 (MD5)
Previous issue date: 2015 / A great number of systems defined as complex consist of interconnected parts or individual components performing a network or graph. Communication between the parts is essential for their existence so that it is necessary a better understanding of their ability to communicate depending on the amount of information that transits. The dynamics of package transport in these systems and the emergence of congestion are problems of high scientific and economic interest. In this work we investigate the dynamical properties of transport of packages (informations) between sources and previously defined destinations, considering different models of spatially embbeded networks such as lattice and Kleinberg. More precisely, we study a second-order continuous phase transition from a phase of free transport to a congestion phase, when the packages are accumulated in certain regions of the network. By means of a Finite Size Scaling, we describe this phase transition characterizing its critical exponents. For 1D and 2D lattice networks, we observe that the critical parameter $p_c$ scales with exponents approximately $-1$ and $-0.5$ with respect to the system size. In the case of Kleinberg newtorks where shortcuts between two nodes $i$ and $j$ are added to the network according to a probability distibution given by $P(r_ {ij}) sim r_{ij}^{-alpha}$, we show that the best scenario occurs when $alpha = d$, where $d$ is the dimention of the topology structure. In this regime, package traffic were shown to be more resilient to the increase of number of packages in the network. The confirmation of our result is obtained not only from direct measure of order parameter, that is, the ratio between undelivered and generated packets, but is also supported by our analysis of finite size. / Um grande número de sistemas complexos são constituídos de partes ou componentes individuais interligados. A comunicação nestes sistemas é essencial para a sua existência sendo necessário o estudo de sua capacidade de se comunicar dependendo da quantidade de informação que está circulando na rede. A dinâmica do transporte de pacotes de informação em tais sistemas e o surgimento de seu congestionamento são problemas de elevado interesse científico e econômico. Neste trabalho, nós determinamos como os elementos de vários modelos de rede espacialmente embebidos, sendo redes regulares e redes de Kleinberg, alteram suas propriedades dinâmicas de transporte de pacotes tratando-as como redes de comunicação. Mais precisamente, estudamos uma transição de fase contínua de segunda ordem de uma fase de transporte de pacote livre para uma fase de congestão, quando os pacotes são acumulados na rede, e descrevemos esta transição por meio de expoentes críticos. Para as redes regulares em $1D$ e $2D$, vimos que respectivamente, o parâmetro crítico $p_c$ escala com expoentes de aproximadamente $-1$ e $-0.5$ para o tamanho do sistema. Já nas redes de Kleinberg, nós mostramos que o melhor cenário, quando o tráfego de pacotes é mais resiliente para o aumento do número de pacotes, é conseguido quando os atalhos são adicionados à rede entre dois nós, nomeadamente nós $ i $ e $ j $, com probabilidade $P(r_ {ij}) sim r_{ij}^{-alpha}$ quando $alpha = d $, onde $ d $ é a dimensão da estrutura subjacente. Além disso, este resultado é obtido não só a partir da medição direta do parâmetro de ordem, ou seja, a relação entre o número de pacotes não entregues e pacotes gerados, mas também é suportada pela nossa análise de tamanho finito.

Identiferoai:union.ndltd.org:IBICT/oai:www.repositorio.ufc.br:riufc/13864
Date January 2015
CreatorsSilva, Samuel Morais da
ContributorsReis, Saulo-Davi Soares e, Araújo, Ascânio Dias
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFC, instname:Universidade Federal do Ceará, instacron:UFC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0149 seconds