Return to search

Thrust Augmentation of Rotating Detonation Rocket Engines

This thesis aims to perform a detailed analysis on a 5th Order Polynomial Nozzle, verifying its effectiveness in improving the thrust performance of a Rotating Detonation Rocket Engine. Rotating detonation engines are a promising engine type that uses detonations as a means of combustion rather than traditional conflagration. Through this method, these engines can produce significant amounts of energy while burning less fuel in the process. However, exhaust flow instabilities and swirl limit the engine's potential for use as a means of propulsion. The 5th Order Polynomial Nozzle was previously demonstrated to reduce and control this swirl; however, analysis was limited to side and back-end imaging. Using a recently built thrust stand, direct performance measurements were made with the nozzle being testing in several configurations. Discussed will be the data collected from the thrust stand, side-imaging to confirm flow behaviors similar to previous tests, and future work that is being done to analyze the exhaust flow.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses-2219
Date01 January 2022
CreatorsRodriguez, Alexander G
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHonors Undergraduate Theses

Page generated in 0.0025 seconds