Return to search

Analysis of Nozzle Expansion Characteristics in Supersonic Retro-Propulsion

Supersonic retro-propulsion (SRP) is defined as rocket propulsion used to decelerate aerospace vehicles at supersonic speed. SRP is often used as a method of high-speed deceleration on space vehicles. The main method of propulsion used in the application of SRP is rocket propulsion. Rocket engine thrust and performance changes with altitude and expansion ratio. Changing altitudes across the trajectory of a rocket affect how the exhaust plume shock waves expand. Being able to identify how different expansion ratios affect the exhaust plume flow fields would provide useful data on how SRP performance can be predicted. This research projects aims at developing a computational model for existing physical test data on SRP and extrapolating data from the model to assess how SRP would perform with different nozzle expansion ratios.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses-2330
Date01 January 2022
CreatorsMontoya, Gonzalo
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHonors Undergraduate Theses

Page generated in 0.0022 seconds