Since their conception in 1999, CubeSats have come and gone a long way. The first few that went into space were more of a “proof of concept,” and were more focused on sending simple data and photographs back to Earth. Since then, vast improvements have been made by over 40 universities and private firms, and now CubeSats are beginning to look towards interplanetary travel. These small satellites could provide a cost effective means of exploring the galaxy, using off the shelf components and piggy-backing on other launch vehicles with more expensive payloads. However, CubeSats are traditionally launched into Low Earth Orbit (LEO), and if an interplanetary satellite is to go anywhere from there, it will need a propulsion system. This thesis project’s main goal will be to investigate the possibility and capability of an Ion-Spray propulsion system. Several problems are to be tackled in this project: how to take a 9 V supply and boost it to a maximum potential difference of 5,000 V, all while minimizing the noise and testing the feasibility of such a system being flown on board a CubeSat.
Identifer | oai:union.ndltd.org:CALPOLY/oai:digitalcommons.calpoly.edu:theses-2305 |
Date | 01 June 2014 |
Creators | Weiser, Nicholas |
Publisher | DigitalCommons@CalPoly |
Source Sets | California Polytechnic State University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Master's Theses |
Page generated in 0.002 seconds